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Abstract  
We consider in this work an expanded finite volume 

numerical approximation of the turbulent k  shallow 

water equations, on unstructured meshes, we use a 

simple discretization in wish only physical fluxes and 

averaged states are used in their formulations. To control 

the local diffusion in the scheme and also to preserve 

monotonicity, a parameter is introduced based on the 

sign matrix of the flux Jacobian. Numerical results are 

presented and compared with experimental data, for a 

backward-facing flow problem, to demonstrate and 

confirm its capability to provide accurate simulation of 

turbulent flows. 

Keywords: Shallow water equations; Turbulence 

model; Depth-averaged k   model; Finite volume. 

 

1. Introduction 
 

Two-dimensional depth averaged models have become 

very popular since the last decades, and the shallow 

water equations in depth-averaged form have been 

successfully applied to many engineering problems, and 

their application fields include a wide spectrum of 

phenomena other than water waves. For instance, the 

shallow water equations have applications in 

environmental and hydraulic engineering such as tidal 

flows in an estuary or coastal regions, rivers, reservoir, 

and open channel flows. Such practical flow problems 

are not trivial to simulate because the geometry can be 

complex, and the topography tends to be irregular. In 

addition, most of water free-surface flows encountered in 

engineering practice are turbulent characterized. This 

property makes direct numerical simulation of turbulent 

flows very difficult.  

In this paper, we adopt the depth-averaged k  model 

proposed in [1], which was the first depth-averaged two-

equation eddy viscosity model, and it is still the most 

commonly used with the depth-averaged models when 

turbulent effects are accounted for in the computation. 

The depth-averaged k  model constitutes an 

alternative for direct numerical simulation and large 

eddy simulation in industrial codes. Their advantage lies 

in the fact that the resolved quantities are assumed to be 

deterministic and therefore require no effective capture 

of random fluctuations, especially in the near-wall 

regions. As a direct consequence, the spatial 

discretization  involved may be significantly more larges. 

More details concerning the depth-averaged models can 

be found in the references [2,3] and for research studies 

on modeling and numerical simulation of turbulent 

shallow water flows, we cite, for example, [4,5]. 

In the current work, we propose an enhanced finite 

volume method that incorporates the techniques of the 

methods proposed in [6]. Our main goal is to present a 

class of efficient numerical methods that can accurately 

solves the turbulent k  shallow water equations. We, 

firstly, rearranged the turbulent k  shallow water 

equations in a model forms a hyperbolic system of 

conservation laws with source terms. Then, the finite 

volume Non-Homogeneous Riemann Solver is used to 

solve this system. The method employs only physical 

fluxes and averaged states in their formulations. To 

control the local diffusion in the scheme and also to 

preserve monotonicity, a parameter is introduced based 

on the sign matrix of the flux Jacobian. 
 

2. The turbulence shallow water equations  
 

In conservation form, the two-dimensional non-linear 

shallow water equations are given by the depth-averaged 

continuity equation and the respective x- and y-depth-

averaged momentum equations [7-8]: 
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 Where h is the total depth from the sea bed to the free 

surface, u and v are the depth-averaged velocity 
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components in the Cartesian x and y directions, bz  is the 

bed elevation above a fixed horizontal datum, g the 

acceleration due to gravity, and 
fyS and 

fyS  are the bed 

shear stress components, defined as

 2 2 2 2,   4fx b fy bS C u u v S C v u v    

where   is the water density and 
bC  is the bed friction 

coefficient, which may be estimated from
2
M

1
3

gn

b
h

C  , 

where 
Mn  is the Manning coefficient, is the kinematic 

viscosity of water, and 
t is a turbulent eddy viscosity, 

that quantify the energy dissipation due to the turbulent 

interactions among the particlesTo determine the 

turbulent eddy viscosity, the k  model is used, in 

which k  is the turbulence kinetic energy and   is the 

dissipation rate per unit mass. The shallow water 

equations are obtained from depth integration, therefore 

it seems reasonable to use the same calcul of the k   

model [9]. Therefore, the turbulent eddy viscosity is 

calculated as:
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Where k and  are given by the transport equation
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HP is the production of k due to interactions of turbulent 

stresses with horizontal mean velocity gradients, and 

kVP  and 
VP  are the productions of k and  due to 

vertical velocity gradients and are related to the friction 

velocity
*U . The friction coefficient Cf  can be obtained 

as:  

 
2* )                         8kU C U           

           

Finally, the values of the empirical constants considered 

in this study are. 

1 20.09 ,  1.44,    1.92,    1.2   and   1.3.kC C C          

        3. SNRH finite volume method 

For simplify, using matrix-vector notation, the two 

dimensional turbulent shallow water system can be 

written: 

 1 2 1 2( ) ( ) ( ) ( ) ( ) 9t x y x y    W F W F W F W F W S W  

Where W  is the vector of dependent variables,
1F ,

2F

are the inviscid flux vectors, 
1F ,

2F are diffusive flux 

vectors, S is the vector of source terms, and the 

subscripts x, y, and t denote partial differentiation. 

In order to discretize system (9), the domain is meshed 

with a set of conforming triangular elements. A finite 

volume discretization of (9) yields. 
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Where ( , )n

i i nx tW W is the vector of conserved variables 

evaluated at time level
nt n  , n is the number of time 

steps, t is the time step, and 
iV is the area of cell 

iV . 

The construction of the numerical scheme is based on the 

hyperbolicity of the system and the self-similarity of the 

solution, it's consists of a predictor and corrector stages 

as: 
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Where ( ( , ))n

ijFA W n is the Jacobian matrix with respect 

to n

ijW , and n

ijW  is approximated either by Roe’s average 

state. 

4. Results and discution 

The results will be compared against data obtained by Fe 

et al. [10] who carried out an experimental and numerical 

study of recirculation in a water channel containing a 

sidewall expansion. The computational domain consists 

in a 0,5 3,5m m horizontal channel with an abrupt 

expansion located at 1m from the inlet, commonly known 

as backward facing step (show figure 2). The inflow 

discharge at the left boundary is enforced with 20.2 /l s

and imposed a water height of 24.2cm  at the outflow 

boundary. the no-slip condition assumes that at a solid 

boundary, the fluid will have zero velocity is imposed for 

the rest. An unstructured triangular mesh are generated 
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for the channel with consist of a 2000 nodes and 3691 

elements (see figure 3). 

 
Figure 2: Flow in channel with a backward-facing step: 

Definition of problem domain 

 
Figure 3: Flow in channel with a backward-facing step: 

Unstructured triangular mesh used in numerical model. 

 

In Figure 4 and 5, we present a comparison between 

experimental and computational results; we illustrate the 

snapshot of the velocity and the kinetic energy along 

with the velocity fields. For clear presentation, we have 

also included streamlines within the presented results. 

From these results, we can see that the proposed method 

resolves accurately the flow structures, and the vortices 

seem to be localized in the correct place in the flow 

domain. For instance, the recirculation zone is in good 

agreement with the experimental measurements. For 

more comparisons, Figure 6 shows profiles of the 

velocity at 1.53x m within the measurement values. 

A good agreement between measured and predicted 

profiles has been obtained. 

 
  Figure 4:  Flow in channel with a backward-facing step: 

Comparison of experimental (top) and numerical 

(bottom) results of kinetic energy k. 

 Figure 5: Flow in channel with a backward-facing step: 

Comparison of experimental (top) and numerical 

(bottom) results of velocity fields  

 
Figure 6: Flow in channel with a backward-facing step: a 

cross section at x=1.53m and x=2.03 of the velocity, with 

a comparison between experimental and numerical 

results. 
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