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Abstract   

This paper reports an analytical and numerical study of the 

natural convection in a horizontal shallow cavity filled with  

non-Newtonian power-law fluids. A uniform heat flux is 

applied to the vertical walls while the horizontal walls are 

impermeable and adiabatic. The solutal buoyancy forces are 

assumed to be induced either by the imposition of constant 

fluxes of mass on the vertical walls (double-diffusive 

convection, a = 0) or by temperature gradients (Soret 

induced convection, a = 1). The case where the buoyancy 

forces induced by the thermal and solutal effects are 

opposing each other and of equal intensity (N = −1) is 

considered. For this situation the critical Rayleigh number 

for the onset of convection is predicted.  

 

Keywords: Double diffusive convection, finite 

volume method, Heat and mass transfer, Soret 

effect. 

1. Introduction  

The thermal diffusion phenomenon, also called Soret effect, 

occurs in a mixture where a temperature gradient induces a 

transfer of solute even with an initial uniform 

concentration. The solute migrates toward the hot or cold 

side depending on the mixture composition and, sometimes, 

on the temperature range too [1]. Thermodiffusion in 

different  fluids is a subject of intensive research due to its 

wide range of applications in many engineering and 

technological areas. These include geophysics, oil 

reservoirs, multi-component melts and storage of nuclear 

wastes and many other applications. 

The present investigation is concerned with the case of a 

shallow layer of a non Newtonian power-law fluid 

submitted to the influence of thermal and concentration 

horizontal gradients. The solutal buoyancy forces are 

assumed to be induced either by the imposition of constant 

fluxes of mass on the vertical walls (double diffusive 

convection) or by temperature gradients (Soret effects). 

An analytical model, based on the parallel flow 

approximation, is proposed for the case of a shallow layer 

(A>>1). The study is completed by a numerical solution of 

the full governing equations. 

 

 

 

 

 

Figure 1: Sketch of the cavity and co-ordinates system. 

2. Formulation mathématique 

The dimensionless governing equations describing 

conservation of mass, momentum, and energy, written in 

terms of velocity components, pressure, temperature and 

concentration are given as: 
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The corresponding boundary conditions are 

 

                                               for  y = 0, 1                         (6) 

                                                                                           

                                                         for x = 0, A             (7)  
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3. Resolution method 

3.1 Numerical method  

The solution of the governing equations and boundary 

conditions, Eqs. (1)–(8), is obtained using a control volume 

approach and the SIMPLER algorithm (Patankar [2]).  

Typical numerical results, in terms of streamlines, 

isotherms and isocencentration, are presented in Figure 2. 

These figures show that the flow is parallel to the 
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longitudinal boundaries and the temperature and the    

concentration are linearly stratified. More discussion will 

focus later on this flow character, which represents the 

foundation of the parallel flow assumptions that allows an 

appropriate problem simplification. 

   
                                       (a), n=0.6 

    
(b), n=0.6        

      
(c), n=1 

                 
(d), n=1       

  
(e), n=1.4   

   
(f), n=1.4 

Figure 2 :Streamlines, isotherms and  isoconcentrations for 

RaT = 10
3
 , N =- 1, Le = 10, and differents valeurs of n. 

(a),(c),(e) double diffusive convection a=0,  (b),(d),(f) 

Soret-driven convection a=1 

3.2 Parallel flow analysis  

On the basis of the results presented in figure 2, the 

following simplifications are used: 
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Where CT and CS are unknown constant temperature and 

concentration gradients in the x-direction. The expressions 

of CT and CS can be deduced by integration of Eqs. (13) and 

(14), together with the boundary conditions (6) and (7), by 

considering the arbitrary control volume of Fig. 1 and 

connecting with the region of the parallel flow [3]. This 

yields:                                                                                                              

                                                                                   (13)         



In such a situation the full non-dimensional governing 

equations reduce to: 

On the basis of the results presented in figure 2, the 

following simplifications are used : 
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The integration of Eqs. (15), (16) and (17), coupled with 

the conditions (6), (7) and (8), leads to analytical 

expressions of velocity, temperature and concentration. 

However, such an operation is difficult to carry out owing 

to the particular nature of the governing equations and 

requires, therefore, a special numerical treatment [4]. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

4. Results and discussion 

The fact of imposing uniform heat and mass fluxes, as 

boundary conditions, leads to flow characteristics 

independent on the aspect ratio, A, when this parameter is 

large enough. . The approximate solution, developed in the 

preceding section, on the basis of the parallel flow 

assumption, is thus valid asymptotically in the limit of a 

shallow cavity (A >>1). The critical Rayleigh numbers for 

the onset of convection are predicted by this theory, The 

rest state is a possible solution provided that the Rayleigh 

number is below a critical value (fig. 3).  

Therefore, numerical tests are performed to determine the 

smallest value of A leading to results reasonably close to 

those of large aspect ratio approximation : the asymptotic 

analytical limits are largely reached for A = 24. Thus, it is 

clear that the flow is generally unicellular, turning 

clockwise, with a parallelism and horizontal heat and mass 

stratifications in major part of the cavity. 

It can be easily demonstrated that the value of Ψc can be 

evaluated from the following expression: 
 

 

 

It is seen from the present theory that the onset of motion, 

occurs at a critical Rayleigh number  RaTC  given by 
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The influence of the thermal Rayleigh number, RaT, on the 

flow intensity and the heat and mass transfer rates, is 

illustrated on Fig. 4, for Le = 10, N = -1 for a=0 and 1. 

It is observed from figure 3 that, the flow intensity increases 

strongly as the value of RaT is made larger than the RaTC.  

 

                                              
 

n 

RaTC 

a = 0 a = 1 

0.6 74.729 67.256 

1.0 122.889 110.600 

1.4 168.976 152.079 

Table 1 : RaTC for various value of n, a = 0 double 

diffusive convection and a = 1 Soret-driven convection. 

The analytical solution, depicted by the solid and dashed 

lines, indicates the possible existence of two convective 

modes for a given value of  RaT . The solution 

corresponding to the higher convective mode (solid line), 

was found numerically to be stable. On the other hand it has 

not been possible to obtain numerical results for the lower 

(dashed line) unstable branch. 

 
(a), n=0.6 

 
(b), n=1 

 
(c), n=1.4 

 

Figure 3 : Temperature for RaT = 50 , N =- 1, Le = 10, 

a=1 and various n.  
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Figure 4 : Effect of RaT  on stream function in the centre of 

the cavity  for N = -1, Le = 10 , a=0 and 1 and differents 

valeurs of n 

5. Conclusion 

In this article, the problem of natural convection in a 

horizontal fluid layer subject to horizontal gradients of 

temperature and solute has been solved by both analytical 

and numerical methods. The influence of the thermal 

Rayleigh number RaT, and parameter a (=0, double 

diffusive convection; and =1 Soret induced convection) on 

the intensity of convection were predicted and discussed. 

The summary of the major results is: 

i) An analytical solution, based on the parallel flow 

approximation, has been derived for the case of a shallow 

layer A>>1. Although, the resulting analytical model 

requires a numerical procedure to solve a transcendental 

equation, this is by far a much easier task than solving 

numerically the full set of governing equations. 

ii) a steady rest state solution corresponding to a purely 

diffusive regime is possible. The critical Rayleigh number, 

RaTC, for the onset of convection is deducted from the 

nonlinear parallel flow approximation. In the vicinity of  N 

= −1, the existence of multiple solutions, for a given set of 

the governing parameters is demonstrated both analytically 

and  numerically. 

Références  

[1] A. Mojtabi, J.K. Platen, and M.C. Charrier-

Mojtabi, Naissance de la convection libre dans les 

solutions salines chauffées par le bas à coefficient 

de Soret variable, Entropie, vol.218, pp.39-

42,1999  

[2] S. Patankar, Num. Heat Transfer and Fluid Flow. 
Hemisphere, New York (1980). 

[3]  T. Makayssi, M. Lamsaadi, M. Naimi, M. 

Hasnaoui, A. Raji, A. Bahlaoui, Effect of solutal 

buoyancy forces on thermal convection in confined 

non-newtonian powerlaw fluids, The International 

Scientific Journal for Alternative Energy and 

Ecology, N° 6, 62, 2008. 

[4] T. Makayssi, M. Lamsaadi, M. Naimi, M. 

Hasnaoui, A. Raji, A. Bahlaoui, Natural double-

diffusive convection in a shallow horizontal  

rectangular  cavity uniformly heated and salted 

from the side and filled with non-Newtonian 

power-law fluids: The cooperating case , Energy 

Conversion and Management, N° 49, 2021, 2008.  


