
13ème Congrès de Mécanique 11 – 14 Avril 2017, (Meknès, MAROC)

REINFORCEMENT LEARNING STRATEGIES FOR CLOSED-LOOP

CONTROL IN FLUID DYNAMICS

C. PIVOT1, L. MATHELIN2, L. CORDIER1, F. GUÉNIAT3, B. R. NOACK2,4,5

1. Institut Pprime, UPR 3346, CNRS, Université de Poitiers, ISAE-ENSMA, F-86961 Futuroscope Chasseneuil, France
2. LIMSI, UPR 3251, F-91405 Orsay, France

3. Center for Exascale Simulation of Plasma-Coupled Combustion, Univ. of Illinois at Urbana-Champaign, USA
4. Technische Universität Braunschweig, D-38108 Braunschweig, Germany

5. Technische Universität Berlin, D-10623 Berlin, Germany

Résumé :
This work discusses a closed-loop control strategy based
on a pure-driven approach relying on scarce and strea-
ming data. A continuous reinforcement learning algo-
rithm is applied to the sensor measurements from which a
Markov process model is derived, approximating the sys-
tem dynamics. An implicit model of the system at hand is
learned from the data, allowing for gradients evaluation
and leading to quick convergence to an efficient control
policy. Thismethod is illustrated on the control of the drag
of a cylinder flow.

Mots clés : Contrôle d’écoulement ; Apprentissage au-
tomatique

1 Introduction
While flow manipulation and open-loop control are com-
mon practice, much fewer successful closed-loop control
efforts are reported in the literature. Further, many of
them rely on unrealistic assumptions. If a model is
employed as is common practice, being a high-fidelity
Navier-Stokes model or a Reduced-Order Model (ROM),
one often needs to observe thewhole system for informing
the model, [9, 1]. Hence, with this class of approaches,
flow control is restricted to numerical simulations or ex-
periments in a wind tunnel equipped with sophisticated
visualization tools such as Particle Image Velocimetry.
This paper discusses a practical strategy for closed-loop
control of complex flows by alleviating the limitations of
current methods. The present work relies on a change of
paradigm : we want to derive a general nonlinear closed-
loop flow control methodology suitable for actual confi-
gurations and as realistic as possible. No a priori model,
not even a model structure, describing the dynamics of
the system is required to be available. The approach pro-
posed is data-driven only, with the sole information about
the system given by scarce and spatially-constrained sen-
sors, and relies on statistical learning methods.

Reinforcement learning, [14, 3], is a suitable class of me-
thods for the control ofMarkov processes, see for instance
[8] for the control of 1-D and 2-D chaotic maps. The usual
version that consists of considering a discretized version
of the state and action spaces suffers from the so-called
curse of dimensionality problem for large-scale dynami-
cal systems. For this reason we consider an alternative ap-
proach where the states and actions are continuous. This
approach allows to exploit smoothness of the dynamics
and the input-output map. Conceptually, a model is lear-
ned, allowing for gradients to be reliably estimated, hence
significantly improving the convergence rate of learning
the control policy. This is a significant difference with
a critic-only approach such as GPC, [1]. The resulting
control strategy, being data-driven only, does not require
significant computational resources nor prior knowledge
of the system.

2 Preliminaries
In the following, we consider the continuous-time deter-
ministic dynamical system

Ẋt = f (Xt,at) , X ∈ X , a ∈ A ⊂ Rna , (1)

with Xt = X (t) the state of the system at time t, a the
action, f the flow operator and na the number of actuators.
Let g : X → Rnp be a sensor function with np the num-
ber of sensors, the observed data y ∈ Rnp are defined as
yt := g (Xt).

2.1 Embedding
Let ∆t be the sampling rate of the measurement system.
Sampling has to be fast enough to capture the small time
scales of the dynamics of yt. The data from the sensors
are embedded in a reconstructed phase space Ω :(

yTt yTt−∆t . . .y
T
t−(ne−1)∆t

)
=: YTt ∈ Ω ⊂ Rne×np .

(2)
The correlation dimension of y is estimated from the

13ème Congrès de Mécanique 11 – 14 Avril 2017, (Meknès, MAROC)

time-series, for instance using the Grassberger-Proccacia
algorithm, [4]. It allows to define the embedding dimen-
sion ne as, at least, twice the correlation dimension. Un-
der mild assumptions, this resulting embedding dimen-
sion ensures there is a diffeomorphism between the phase
space X and the reconstructed phase space, [13], so that
y is an observable on the system.

2.2 Delayed effect of the action

In some experiment (for example the one described in
Sec. 4) there might be a delay τd between the action and
its effect as measured by the sensors. To control such a
system with a reinforcement learning algorithm, we need
to extend the state y with each actions applied to the sys-
tem between t− τd and t, [6] :(

YTt aTt aTt−1 · · · aTt−d
)

=: xTt ∈ S = Ω×Ad, (3)

where d := d τd∆ta
e with ∆ta being the time between two

consecutive actions, corresponding to the number of ac-
tions applied between t− τd and t.

2.3 Identification of Local Linear Models

In a continuous framework, smoothness of the dyna-
mics can be taken as an advantage to approximate func-
tions. Many techniques for approximating the dynamics
are available and we use a locally linear modelling, [15],
of the different quantities involved in reinforcement lear-
ning. More precisely, a generic quantity z depending on
generic parameters u will be locally linearly approxi-
mated from acquired knowledge

{
u(i), z(i)

}
i∈I , where

I is a set of past samples. Considering the K nea-
rest neighbors K (u), in the sense of a given metric,{
u(i), z(i)

}
i∈K(u)

, z (u) is approximated with a local
least squares technique as

z (u) ≈ ẑ (u) = β

(
u

1

)
. (4)

The coefficients β can be determined through a pseudo

inverse as β = Z U+ where U :=

({
u(i)

}
i∈K(u)

1K

)
∈

R(nu+1)×K and Z :=
({

z(i)
}
i∈K(u)

)
∈ Rnz×K col-

lect the relevant inputs and outputs from the database.
β ∈ Rnz×(nu+1) is composed of a bias term and an ap-
proximation of the gradient of z around u.

Efficient strategies are used to manage and update the col-
lection of samples, [5].

3 Continuous reinforcement learning
Wework in the framework of Markov Decision Processes
(MDP), which are 5-tuples {X ,A, f, r, γ}, withX ,A and
f already defined, r : X ×A → R a reward function and
γ ∈ [0, 1] a discount factor.

The goal of the control strategy is to identify the optimal
policy π : X → A, which describes the best action to
apply when in a given state so as to maximize the Value
function, V π , defined as the sum of the future expected
rewards when starting at state Xt :

V π (Xt) :=

∫ +∞

t

e−
s−t
τ r(Xs,as) ds, as := π (Xs) ,

(5)
where τ is the time constant for discounting future re-
wards. Equation (5) may be reformulated as the Bellman
equation associated to the optimal policy, [2] :

V π (Xt) = max
at[t,+∞[

[r(Xt,at) + γV π(Xt+1)] , (6)

where γ = e−
∆t
τ with ∆t the sampling time.

To derive a control strategy, one needs to determine a po-
licy which would give the best control action given the
current state of the system. First, the rewards associated
with an action when in a given state are learned. Then,
this information is used to derive a control policy to drive
the system along transitions and actions associated with
the largest rewards.

Reinforcement Learning is a suitable class of methods for
the control of Markov processes when the distribution of
transition probabilities and values are difficult to evaluate,
[14, 10, 7]. In the following, the algorithm we consider is
based on the sequential minimization of the temporal dif-
ference defined at time t as the difference between the two
sides of the Bellman equation (6), which can also be ob-
tained by differentiating the Value (5) i.e.

δt+1 := r(Xt+1, at) + γV π(Xt+1)− V π(Xt). (7)

We now introduce a model-based continuous method for
minimizing the temporal difference. In our case, the state
Xt is unknown and, in the following, we use xt instead,
which only involves accessible information on the system.
The value function V π is modeled with the use of lo-
cal linear models, [5]. We note V̂ π(x) the approximation

of the value function, see Sec. 2.3, V̂ π(x) = βV

(
x

1

)
.

The flow φ of the system, which describes the evolution
of xt, and the policy π are also approximated with the
use of local linear models. We have x̂t+1 = φ̂(xt,at) ≈

13ème Congrès de Mécanique 11 – 14 Avril 2017, (Meknès, MAROC)

βφ

xt
at
1

, and π(x) ≈ π̂(x) = βπ

(
x

1

)
.

The temporal difference can then be used for updating the
value database, [5] :

e← λ e, (8)

ei = 1, i ∈ K(xt), (9)

V̂ π ← V̂ π + αt,c δt e, (10)

where e ∈ [0, 1]|I| is the eligibility trace, [12]. Eligibi-
lity trace is a way to account for states (or states-actions)
pairs visited several time steps in the past. The importance
of these states decays with time with a factor λ ∈ [0, 1].
αt,c ∈]0, 1[is a learning rate.

The policy database is also updated. At each time t, the
outputs action

{
a(i)

}
i∈K(xt)

, used for the approximation
of the policy (see (4)) are modified. Finding the optimal
policy requires to maximize the value. Consequently, the
optimal corrections ∆a have to follow the gradient of the
value function with respect to the chosen action at at time
t :

∆a ∝ αt,a ∇aV̂ π, (11)

with αt,a ∈]0, 1[a learning rate. The gradient in (11) can-
not be directly evaluated but, assuming the Bellman equa-
tion (6), is satisfied, one can write :

∇aV̂ π = ∇ar(Xt,at) + γ∇aV̂ π(x̂t+1). (12)

The first term of the right hand side is analytically known
and, using the chain rule, the second term can be decom-
posed as, [5],

∇aV̂ π(x̂t+1) =
(
∇xV̂ π(x̂t+1)

)T
∇aφ̂(x, a) = βVx βφa,

(13)
where βVx , respectively βφa , correspond to the part of βV ,
respectively βφ, associated with the state xt, respectively
the action a. The actions are then updated following :

a(i) ← a(i) + ∆a, i ∈ K(xt). (14)

To improve performance, exploration is added every p
time steps by randomly perturbing the command law :

a← a +N (0,Σ), (15)

where N (0,Σ) denotes a centered Gaussian noise with
covariance Σ, here chosen as Σ = σ2 Ina .

4 Proof-of-concept : Two-dimensional cy-

linder wake flow
To illustrate the methodology discussed above, we consi-
der a 2-D laminar flow around a circular cylinder. The
Reynolds number of the flow is Re = 200 based on
the cylinder diameter and the upstream flow velocity.
The observable y is constructed from the time series
{y (t− n∆t)}ne−1

n=0 of an array of 3 pressure sensors
located half a radius downstream the cylinder, sampled
every ∆t = 5 time units (t.u.). The embedding dimension
is determined to bene = 2.We use the finite element code
Feel++, [11], to solve the Navier Stokes equations on an
unstructured grid. Free-stream velocity boundary condi-
tions are imposed at the top and bottom of the numerical
domain. The time step of the simulation is dt = 0.1 time
unit.

The control is achieved via rotation of the cylinder at a ro-
tational speed a ≡ a (t). The actuation is updated every 2
time units. The cost function to minimize is the drag FD
induced by the cylinder penalized with the intensity of the
command.

r(Xt, a) = −ρ |FD|2 − |a|2. (16)

The drag FD is a function of the state Xt. The penalty
ρ > 0 is chosen such that the resulting command remains
within the operating range of the control.

The total time of simulation is 1000 t.u. (which corres-
ponds to about 400 periods of vortex shedding) where the
exploration is added every 10 time steps, up to t = 750

t.u., with an amplitude of 0.5 rad.(t.u.)−1. The maxi-
mum rotation speed of the cylinder is set to 5 rad.(t.u.)−1.
The other parameters of the algorithm are presented in
Table 1.

The drag coefficient of the cylinder is plotted in Fig. 1 for
the present approach as well as the NULL command, i.e,
no control, a ≡ 0. The identified control is seen to per-
form well. The drag is reduced by 17 % and the control
command oscillates at the period of the wake, half the fre-
quency of the drag, as expected.

Références
[1] S. Brunton and B. Noack. Closed-loop turbulence

control : Progress and challenges. App. Mech. Rev.,
67(5) :050801, 2015.

[2] K. Doya. Reinforcement learning in continuous time
and space. Neural Computation, 12 :219–245, 2000.

13ème Congrès de Mécanique 11 – 14 Avril 2017, (Meknès, MAROC)

Actor Critic Model
Learning rate αt,a = 0.002 αt,c = 0.005 -
Memory size |Ia| = 10000 |Ic| = 10000 |Im| = 10000
Neighbours Ka = 80 Kc = 80 Km = 80

Other parameters
γ 0.93
λ 0.7
ρ 0.1

Table 1 – Parameters of the Model Learning Actor-Critic algorithm.

-0.82

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

-0.64

-0.62

0 1 2 3 4 5 6 7 8 9 10
-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

F
D

a
(r
ad

(t.
u.
)−

1
)

Time (t.u)

Figure 1 – Drag force FD of the cylinder at Re = 200 function of time. In pale brown, the drag associated with the
NULL command. In dark brown, the drag after convergence of the algorithm. In green, the command law evaluated by our
algorithm.

[3] A. Gosavi. Target-sensitive control of Markov and
semi-Markov processes. Int. J. Control Autom.,
9(5) :941–951, 2011.

[4] P. Grassberger and I. Procaccia. Measuring the
strangeness of strange attractors. Physica D, 9 :189–
208, 1983.

[5] I. Grondman, M. Vandraager, M. Busoniu, R. Ba-
buska, and E. Schuitema. Efficient model learning
methods for actor-critic control. Sys. Man Cyber.,
42(3) :591–602, 2012.

[6] K. V. Katsikopoulos and S. E. Engelbrecht. Mar-
kov decision processes with delays and asynchro-
nous cost collection. IEEE Transactions on Auto-
matic Control, 48(4) :568–574, April 2003.

[7] F. Lewis and D. Vrabie. Reinforcement learning
and adaptive dynamic programming for feedback
control. Circuits Syst. Mag., IEEE, 9(3) :32–50,
2009.

[8] C.T. Lin and C.P. Jou. Controlling chaos by ga-
based reinforcement learning neural network. IEEE
T. Neural Networ., 10(4) :846–859, 1999.

[9] L. Mathelin, L. Pastur, and O. Le Maître. A
compressed-sensing approach for closed-loop op-

timal control of nonlinear systems. Theo. Comp.
Fluid Dyn., 26(1-4) :319–337, 2012.

[10] W. Powell. Approximate Dynamic Programming :
Solving the curses of dimensionality, volume 703.
John Wiley & Sons, 2007.

[11] C. Prud’Homme, V. Chabannes, V. Doyeux, M. Is-
mail, A. Samake, and G. Pena. Feel++ : A Compu-
tational Framework for Galerkin Methods and Ad-
vanced Numerical Methods. ESAIM : Proceedings,
38 :429–455, December 2012.

[12] R.S. Sutton and A.G. Barto. Reinforcement lear-
ning : An introduction, volume 116. Cambridge
Univ Press, 1998.

[13] F. Takens, D.A. Rand, and L.S. Young. Dyna-
mical systems and turbulence. Lect. Notes Math.,
898(9) :366, 1981.

[14] C.Watkins and P. Dayan. Q-learning. Mach. Learn.,
8(3-4) :279–292, 1992.

[15] D. Wilson and T. Martinez. Reduction techniques
for instance-based learning algorithms. Mach.
Learn., 38(3) :257–286, 2000.

