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Abstract.
In this paper, we introduce a Mixed Finite Element of elasticity linear problem in two space dimension.This problem

is appointed by Lame system with Neumman and Dirichlet boundary conditions,physically called forces of traction.In the

context,we show the existence and uniqueness of the solution of the weak formulation associated with the proposed problem.Then
we prove that the discrete condition inf − sup is shown by using the finite element P1-Bublle.P1.
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Introduction
This paper presents a comprehensive study of Lam’s system with Neumann and Dirichlet boundary conditions :

f = −µ∆U − (λ+ µ)∇(∇.U)in Ω

f = (f1, f2), U = (u1, u2)

U =
−→
h on Γ2,4 = Γ2 ∪ Γ4

µ
∂U

∂n
+ λ∇.Un = −→g on Γ1,3 = Γ1 ∪ Γ3

(0.1)

with U is the displacement, f is the exterior force applied into the domain Ω and λ, µ are the physically con-

stants of the materials of Ω , g is the force of traction.
we prove the existence and uniqueness of weak solution of Lam’s system,basing on assumptions mentioned in

the article [1] .

this later reference had presented all cases that we can meet .
The existence and uniqueness of the solutions to the system are shown under some standard conditions,that

1Corresponding author. E-mail: kouba108@gmail.com
1



2

we will mention later.

To calculate this weak solution we use the discretization by mixed finite element method using P1-bubble.P1.

Model building Solid object is deformed under the action of forces applied.
A point in the solid ,originaly in (x, y) , after sometime it will come into (X,Y ) , the vector U = (u1, u2) =

(X − x, Y − y) is called displacement.

When the movement is small and the solid is elastic then HOOK’s law gives a relationship between the stress
tensor and the strain tensor.

σ = λtr(ε)I2 + 2µε (0.2)

with : σ is the stress tensor .
ε = 1

2
(∇U + (∇U)T ) is the strain tensor.

I2 is the identity matrix.

µ is the shear modulus (or rigidity).
where λ is Lam’s first parameter.

Navier’s equation is given by

divσ = λdiv(tr(ε)I2) + 2µdivε (0.3)

Then we have :

divσ = λdiv(tr(ε)I2) + µdiv(∇U) + µdiv(∇U)T (0.4)

with a simple calculation,we find that

div(tr(ε)I2) = div(∇U)T = ∇(div(U)) (0.5)

We obtain

ρa = µ∆U + (λ+ µ)∇(divU). (0.6)

If the solid is in dynamic equilibrium so: ρ a + f = 0,f are the external forces applied to the solid .Finally,we
result the equation

f = −µ∆U − (λ+ µ)∇(divU) (0.7)

The second term (λ+ µ)∇(divU) simulates a preservation volume .
the traction force is given by :

σ.n = µ
∂U

∂n
+ λ(∇.U)n (0.8)

where n is the unit outward normal.In the above,σ is the Cauchy stress .

In the present investigation, we consider small strains and displacements.
The kinematics equations therefore consist of the strain-displacement relation :

ε = ε (U) = ∇s U. (0.9)
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The weak formulation :Find (u, χ) ∈ V (Ω)× L2
0(Ω) such that



∫
Ω
µ∇u : ∇vdΩ +

∫
Γ1,3

λ(∇.u)n.v dΓ1,3 +

∫
Ω

(λ+ µ)χ∇.v dΩ −
∫

Γ1,3

(λ+ µ)χn.v dΓ1,3

=

∫
Γ1,3

g.v dΓ1,3 +

∫
Ω
f.v dΩ ∀v ∈ V0(Ω)∫

Ω
(λ+ µ)χ q dΩ =

∫
Ω

(λ+ µ) q∇.u dΩ ; ∀q ∈ L2
0(Ω)

(0.10)

∀(v, q) ∈ V0(Ω)× L2
0(Ω)
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Fig 1:visualzation of u1 of the solution U
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