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Abstract
Acoustic receptivity of a Blasius boundary layer in the
presence of  two dimensional  surface  inhomogeneity is
investigated numerically.  It  is  shown that,  an  efficient
conversion  of  the  acoustics  input  to  an  unstable
eigenmode of the boundary layer depends strongly not
only  on  the  shape  but  also  on  the  width  of  surface
roughness trough the band of Fourier Components. The
location  of  the  surface  roughness  is  dictated  by  the
requirement of the instability wave number at the lower
branch  of  the  stability  curve  derived  from  the  Orr-
Sommerfeld  equations.  Three  different  shapes  are
considered.
Mots clefs: Acoustic, receptivity, Instabilities, 
Tollmien-Schlichting, Boundary Layer flow.

1. Introduction
Understanding  and  controlling  the  transition  from
laminar  to  turbulent  flow  is  necessary  for  optimal
designs in aeronautical industries where the lower drag
that characterizes the laminar flows is sought. In these
situations a fuel saving up to 25% would be achieved.
The process of transition in boundary layers of external
flows  starts  from  the  moment  an  external  disturbance
enter  the  boundary  layer  and  generates  instabilities.
According to (Morkovin. 1969)[3] this process is known
as Receptivity.  In the case where the disturbance is an
acoustic wave,  energy is transferred  from  the  acoustic
wave to Tollmien-Schlichting (TS) instabilities through
wavelength scattering such as in the presence of surface
inhomogeneity with a finite height where the boundary
layer is forced to make a rapid change in order to adjust
itself.  Earlier  studies  by  (Tollmien  1929)[9] and
(Schlichting.  1933)[8] when  considering  the  perturbed
Orr-Sommerfeld  equations  for  a   Blasius  Boundary-
Layer Profile show  the existence of stable and unstable
domain  for  a  set  of  a  Reynolds  number  based on  the
boundary  layer  thickness  and  a  frequency  parameter.
These  findings  were  confirmed  by  other  subsequent
numerical  and  experimental  works.  The  boundaries
between  the  two  situations  are  known  as  the  neutral
curve and have a lower and an upper branch. 

2. Methodology
2.1 Physical parameters of the simulation
The numerical  experiment  is largely inspired from the
experimental work of (Saric et al. 1991)[5] performed in
wind tunnel during their study of acoustic receptivity due

to  a  2-D  roughness  on  a  flat  plate  with  a  minimum
leading  edge  effect.  The  roughness  is  located  at

0.46m  of the leading edge which has a Reynolds

number  
U δ❑ (x=0.46 )

ν
=1015  where  δ❑  is

the BL displacement thickness, the Frequency parameter
of the  problem is   F=49.3310− 6 .  The acoustic
wave  amplitude  and  frequency  are  respectively

a=0.01  and ω=37.354 s−1 . (Figure 1) give
a rough sketch of the experiment and the location of the
surface roughness.

Figure 1
2.2 Conservations Equations
The conservation equations are similar to the pseudo-
compressible form of  the Navier-Stokes equations 
introduced by (Chorin. 1967)[1]

 

 
The variables vector q and the inviscid flux vectors are

and the viscous flux vectors are:

            
fIn the above equations Re is based on the plate length 
and β is a surrogate ofc2  where c is the local speed of 
sound.
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2.3 Numerical Solution
The  conservation  equations  are  solved  using  a  time
accurate  Navier  Stokes  code  (Manno  et  al.  1993)[2].
Viscous  terms  are  approximated  using  central
differencing while the convective  terms are discretized
using a third order MUSCL TVD scheme in conjunction 
with Riemann solver (Sbaibi et  al.  )[7]  Two options are
used for  the time advancement. An explicit,  three-step,
second  order  Runge-Kutta  algorithm  is  used  to
accurately simulate the transient computations.
An  implicit,  approximate  factorization,  time
advancement is used only to accelerate to steady state
conditions that characterize the base flow over which a
transient component is added.  The computer  code was
extensively  validated  for  a  wide  range  of  steady  and
transient flow situations including some fluid-acoustics
problems (Reitsma et al. 1997)[4].
The computer  domain of  (1275x52)  cells  includes the
leading edge of the plate and an exit zone used as buffer
zone.  A non-uniform  griding is  performed  in  order  to
capture the fine structure near the surface roughness.
The  inflow  boundary  condition  is  a  first  order  non-
reflective  boundary based  on  perturbations  around the
Blasius velocity profile. The boundary condition on the
top sets u and v velocity gradients to zero and with the
pressure  calculated  from  the  appropriate  characteristic
compatibility  relations.  A  non-reflective  outflow
boundary  condition  was  imposed  on  exit  zone.  Three
different  shape  of  the  surface  roughness  were  used
(rectangular, cosine and exponential).  

3. Results
3.1 Rectangular shape
The first  numerical  investigation  deals  with  a  surface
roughness of rectangular shape that simulates the Mylar
strip used by (Saric et al.1991)[5] the width is set to TS/2.
A converged steady state without any acoustic source is
obtained with a large CFL over 20000 time steps using
the implicit  approximately factored algorithm and then
the calculation is restarted using an explicit Runge-Kutta
method with a low CFL number. This converged steady
state will provide a baseline against which  to compare
the unsteady solution.  During the  second  stage  of  the
explicit  computation,  the  acoustic  source  is  triggered.
The acoustic wave is allowed to cross the computation
domain with few wavelengths. The obtained solution is a
blend of the base flow; the unsteady stokes component as
well  as  the  TS  component.  The  Stokes  solution  is
obtained  when  using the acoustic  source  that  interacts
with the boundary layer flow of a homogeneous flat plate
(without roughness) as described by (Worner .2000)[10]. A
sample of the u'TS at a fixed value of y/Lref =0.00078 for
different x location is shown in figure 2. The exponential
amplification of the u'TS component is clear  from plot.
Likewise,  a  plot  of  the  u'TS  versus  the  y  elevation  is
presented in figure 3. These two plots exhibit the same
behavior and compare favorably to the largely published
results. The most unstable  TS  obtained from figure 2 is
equal  to 0.054 which is similar  to the analytical  value
based on the linear  stability theory. Plots similar to the
one on figure 2 allow the calculation of the amplification

factor  at  different  x  stations  downstream  the  surface
inhomogeneity by frequency inverting method or simply
by plotting Log u'TS_max versus x.

Figure 2: T-S perturbation profile of u velocity triggered by hump at x=0.46

Figure 3: Amplitude of T-S waves traveling across a rectangular hump located at x=0.46

3.2 Effect of the roughness geometry
In  this  section,  we  present  results  of  numerical
experiments  considering  various  shapes  and  different
widths of the roughness. Example of u'TS amplification is
given  on  figure  4 for  different  shapes and a  width  of
TS/2.  i.e  b=0.5  where  the  non-dimensional  number
b=width/  TS. We can see that the shape does not affect
the TS wavelength  value  but  has an  influence on  the
strength  of  u'TSmax.  However,  the  amplification  is
independent of the shape as can be seen from the slops of
Log u'TSmax in figure 4 and the subsequent figures 5 and 6.
In the case of the rectangular and the exponential shapes,
the higher strength is obtained with b=0.5 and 1.5 where
area  the  maximum  strength  with  the  cosine  shape  is
obtained with b=0.5 and 1. For any particular shape there
exists a width that does generate a weak amplitude of the
u'Tsmax. It is corresponds to the wavelength for which the
Fourier  transform  of  the  shape function  vanishes.  On
figure 7 we plot the u'TS for different shape with a width
of  TS, where  the  receptivity of  the  rectangular shape
vanishes. This is a clear proof of the interaction of the
acoustic wave and the Fourier components. 

4. Conclusion
Numerical investigation of the acoustic receptivity of a
subsonic boundary layer in the presence of 2D surface
inhomogeneity was conducted. The effect of the shape as
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well  as the effect  of  the width  where considered.  The
numerical  results are in very good agreement  with the
theoretical and other perturbation methods.[6] [10]

This  study  had  put  forward  the  superiority  of  the
computational  solver  based on  the advanced numerical
methods inspired from the compressible CFD. The finite
compressible  method  seems  to  be  promising  in
simulating  some  other  aero-acoustic  problems  that
cannot be handled neither  by the perturbation methods
nor by incompressible CFD solvers.

Figure 4: Amplitude growth of a T-S wave as function of width for rectangular shape

Figure 5: Amplitude growth of a T-S wave as function of width for exponential shape

Figure 6: Amplitude growth of a T-S wave as function of width for cosin shape

Figure 7: T-S perturbation profile of u velocity triggered by different shape at x=0.46
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