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Abstract 

The linear stability analysis of plane Poiseuille flow in a 

Maxwell fluid in the presence of a uniform cross-flow is 

studied.  The physical problem is reduced to a modified 

Orr-Sommerfeld equation with nonlinear eigenvalues 

and solved numerically using the Chebyshev spectral 

collocation method. Attention is focused on the combi-

ned effects of uniform cross-flow and the relaxation time 

of the fluid (Deborah number) on the flow stability. Re-

sults obtained in this framework show that, the cross-

flow can either delay or advances the instability of this 

system, respectively for the case of a Newtonian fluid 

and for the case of a Maxwell one. In addition, the sys-

tem is apt to lose its instability with the fluid’s elasticity 

in short wavelength and to enhance this instability in the 

long wavelength regime. 

Keywords: hydrodynamic stability, Cross-flow, Max-

well fluid, Spectral Method, Nonlinear eigenvalues. 

1. Introduction 

Since it was encountered in many industrial and technol-

ogical applications, the stability of flows between two 

porous walls in the presence of cross-flow has received 

an upsurge interest during the last decay. One can cite 

for example: the biomedical industry, papermaking, 

filtration systems, environmental engineering and aero-

nautics. This configuration was initially carried out theo-

retically by Berman [1] in which a description of the 

laminar flow is discussed.  In addition, Hains [2] and 

Sheppard [3] performed a linear stability analysis of the 

channel flow of Newtonian fluids, with an injection in 

the upper wall and a suction to the bottom one. In these 

studies, the authors have shown that a modest amount of 

uniform injection/suction of the same fluid produced a 

significant increase in critical Reynolds number. Indeed, 

they have defined two Reynolds numbers related respec-

tively to, the maximum symmetric plane Poiseuille ve-

locity and the cross-flow velocity. An extension of pre-

vious works [2, 3], Fransson and Alfredsson [4] have 

made corrections to the problems discussed in [2, 3]. In 

particular, they separated the effects of the velocity dis-

tribution from those of the magnitude of the velocity in 

the basic state, by using the maximal channel velocity of 

plane Poiseuille flow with the presence of a cross-flow 

as their characteristic velocity. Consequently, they 

proved the dependence of stability problem to the choice 

of the speed scale. In addition, they showed the stabiliz-

ing and destabilizing effect of transverse jet. Thus, they 

have mentioned that the cross-flow has stabilizing and 

destabilizing effects depending to the cross-flow rate. 

Recently, Lamine and Hifdi [5] showed that the cross-

flow’s sense has no effect on the stability of Poiseuille 

flow. In this paper, we extend the stability analysis of 

plane Poiseuille flow of a Newtonian fluid to that of a 

viscoelastic model. The considering model is that of a 

linear Maxwell fluid with a constant viscosity and a 

weak elasticity. This model can be used in certain indus-

trial applications, especially in the analysis of small 

deformations of plastics. Furthermore, some particular 

fluid that often behave like a linear Maxwell model, for 

example the associative polymers such as hydrophob-

ic ethoxylated urethane (HEUR) [6] and aqueous surfac-

tant solutions containing threadlike micelles [7]. Recent-

ly, the effect of relaxation time of linear Maxwell model 

on the stability was examined out by Riahi et al. [8] who 

analyzed a linear stability of a pulsed flow in a linear 

Maxwell fluid in the Taylor-Couette system. Our inves-

tigation is focused to understand the combined effects of 

cross-flow and relaxation time in parallel shear flow. 

This paper is organized as follows. The studied configu-

ration and the steady basic flow solution are defined in 

section 2. Section 3 is devoted to performing a linear 

stability analysis and to present the numerical method 

used to solve the stability problem. In section 3, pertinent 

results are discussed quantitatively. 

2. Formulation and base-flow solution 

Consider a plane channel flow of an incompressible fluid 

with the density, , and the dynamic viscosity, µ. The 

channel is formed by two porous parallel plates separated 

by a fixed distance 2d. The upper and lower plates are 

located, respectively, at y* = +d and y* = −d. A uniform 

cross-flow (injection/suction) of constant velocity, vo, is 

imposed on the channel walls in the transverse direction, 

y*. The injection at upper plate and suction at lower 

plate as shown in Fig.1. The mathematical equations 

modelling the physical problem in their dimensional 

forms (*) are, respectively, the continuity and Cauchy 

equations 
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Figure 1 Sketch of the flow configuration. 
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where V
*
,  P

*
 and t

*
 are, respectively, the velocity the 

pressure and the time.
*

τ is the stress tensor, which can 

be written in a linear Maxwell’s model fluid as follows 
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Here   is the relaxation time and   


  represents the rate 

of strain tensor. The boundary conditions at the walls 

(y
*
= ±d) are 
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Using reference variables 
**

maxmax
,/, UUdd and 2*

maxU for, 

respectively, length, time, velocity and pressure (
*
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represents the maximum streamwise velocity), as follows 
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The basic velocity profile in non-dimensional form can 

be written as 
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This basic solution depend only on the cross-flow Rey-

nolds number, )(

dvR o

c  , and it is identical to that 

established by Fransson and Alfredsson [3] for a Newto-

nian fluid. In addition, for cR  tend to zero, the basic 

velocity reduces to that of plane Poiseuille flow (1-y
2
).  

3. Linear stability analysis  

To study the linear stability of this problem, we assume 

that the infinitesimal perturbations (v and p) are supe-

rimposed to the basic flow variables (V and P) as follows 
 

''' ;; pPPvvVuUV boyx          (8) 
 

 Using the stream function, , then the solutions can be 

sought into Fourier’s modes as follows 
 

  )(,),( ctxiepp                         (9)    
                                           

where   and p are, respectively, the complex amplitudes 

of the perturbations 
'v  and 

'p , and c (=cr+ici) is the 

complex wave speed and i
2
 = −1. Also, α designates the 

wave number which is correlated with the wavelength, δ, 

by the relation α=2π/δ. The differential equation deter-

mining the stability is expressed by 
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Re   represents the Reynolds number 
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Equation (10) represents the classical Orr-Sommerfeld 

equation in which two additional terms are added. The 

first term is due to the cross-flow ( cR ). The second one, 

is related to the non-dimensional relaxation time,  , 

designated by Deborah number, De )(
max



dU
 . The 

corresponding boundary conditions are: 
 

  0)1(,)1(  yy y                      (11) 

Eq. (10) associated to these boundary conditions (11) are 

resolved numerically using the Chebyshev spectral col-

location method based on the most commonly used, N 

collocation points of Gauss- Labatto [9]. Under these 

conditions, our stability problem is reduced to an alge-

braic system with non-linear eigenvalues, c 

02   GccFE                      (12) 

where E, F and G are three matrices containing De, Re, 

RC, α and N. It should be noted that, this flow is linearly 

unstable if ci > 0 [10]. The accuracy of the numerical 

code has been checked through comparison with the 

results of Orszag [11] for plane Poiseuille flow of a New-

tonian fluid and the results obtained by Fransson and 

Alfredsson [3] for plane Poiseuille flow with cross- flow. 

All the numerical results presented in the present work 

are computed with 120 collocation points. 

4. Discussions and conclusions  

Our main purpose concerns the stability of the consi-

dered system on the basis of the typical behavior of the 

fastest growing rate of the most unstable mode, ωi= αci, 

versus the wave number α under the combined effect of 

the cross-flow Reynolds and the Deborah numbers. In 

this case, we have assigned to the Reynolds number the 

value corresponding to the classical solution of Poi-

seuille flow (Recp=5772.22) [11]. The corresponding 

results are plotted in Figs. 2 and 3. 
 

 
 

Fig .2: The fastest growing rate of ω vs wave number, α, for different 

values of Rc, (a): De=0; (b): De =0.01; (c): De =0.1; (d): De =0.5 
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Fig .3: The fastest growing rate of ω vs wave number, α, for different 

values of De, (a): Rc=0; (b): Rc=0.5; (c): Rc=1; (d): Rc=2 

 

Figs. 2(a-d) show the variations of ωi with α for increas-

ing values of RC and different values of De. It can be 

seen that, for the Newtonian case and without cross-flow 

(De=0 and RC=0 [see Fig. 2-a]), the flow is always sta-

ble since ωi is negative, An instability, however, is ob-

served in a narrow region of the wave number, 

0.9705<α<1.0596, where ωi > 0. This instability picture 

is changed in the presence of cross-flow where RC ≠ 0. 

Indeed, all curves in Figs. 2(a) show that, except an in-

termediate wave number region, an increase in RC causes 

a weak decrease in the growth rate ωi and a suppression 

of the instability zone occurred when RC =0. This result 

highlights a stabilizing effect of the cross flow at small 

and large wave number regions for a Newtonian fluid. 

This stabilizing effect is more pronounced near αcp = 

1.02056, which correspond to the classical solution 

where RC =0 [11].  

A different behavior is observed at large values of the 

wave number for the Maxwellian fluid, De ≠ 0, [Figs. 

3(b–d)] where the growth rate ωi continuously increases 

with RC. Similarly, to the Newtonian case, the cross-flow 

has the same effect on the stability of the system 

near αcp. In addition, no effect of the number RC is ob-

served for the small values of the wave number especial-

ly for De = 0.5. 

In order to discern the effect of the elasticity on the sta-

bility of the system, Figs. 3 (a-d) illustrate the evolution 

of the growth rate as a function of the wave number for 

increasing De and for several values of RC. As one can 

notice, for small values of wave number (region I) there 

is no effect of the Deborah number while a strong stabi-

lizing effect is observed for the high values of the wave 

number (region III). In addition, for α < αc (region II), 

where αc is a wave number when an intersection of all 

the curves is occurred, the system is prone to stabiliza-

tion (increase of ωi) by increasing the fluid’s elasticity 

up to De=0.1. Note that the cross flow number tends to 

decrease the value of αc .as shown in Fig.4.  

 
 

Fig .4: Variation of the critical wave number with cross-flow Reynolds 
number 

To conclude, on the basis of the results presented in this 

paper, the cross-flow tends generally to stabilize the 

basic flow corresponding to a Newtonian fluid. This 

stabilizing effect is not conserved in the case of a Max-

well fluid, especially for short wavelengths where RC has 

a destabilizing effect. On the other hand, the fluid’s elas-

ticity leads to enhance the stability of the flow in short 

wavelength and to delay this stability in the long wave-

length region. 
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