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Abstract 

In this paper, dynamic analysis of a parallel robot is 

presented using the most popular approach named the 

Newton-Euler formulation. In this method, the dynamic 

formulation for each limb and the moving platform must 

be derived which leads to the calculation of all forces, 

and this can be helpful in the design of parallel 

manipulator. In this way, dynamic formulations of the 

proposed model are used in motion control strategy of 

this robot to track and analyze its performance. 
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1. Introduction 

Dynamic analysis of parallel robots is more complex 

than the serial robots due to their closed loop structure. 

However, dynamic modeling is relatively essential for 

control strategies, where precision and desired dynamic 

performance are required. Numerous techniques have 

been used for the dynamic analysis of parallel robot 

[1][2][3]. These robots have many types of applications. 

The type we are interested in is when the moving 

platform of the manipulator precisely tracks a desired 

trajectory with respect to definite period, without need to 

interactive forces to be applied to the environment. A 

typical application for this situation can be realized in the 

motion of a flight simulator. In this case, it is required to 

define the desired path of the robot moving platform via 

analysis of many conditions and pilot commands, and 

then the manipulator has to determine the time history of 

actuator inputs needed to cause such motions [4][5].In 

what follows, a number of cases in motion control of the 

proposed model are analyzed and presented. 

 

2. Kinematic Analysis of 4 RPR 

Manipulator 
Referring to Figure 1 the 4 RPR parallel robot is 

described as follows: In the base we have four points B1, 

B2, B3 and B4. In the moving platform, we have the same 

situation, four points P1, P2, P3 and P4. 

Now each pair of points Bi and Pi  is interconnected by a 

limb of length Li which is an independent serial leg of 

type RPR, where R and P stands for revolute and 

prismatic joint, respectively. αi stands for the limbs 

angles and Φ for the moving platform orientation. The 

motion of the platform is controlled by extending or 

retracting the actuated prismatic joints. A fixed frame 

OB: XBYB is attached to the fixed base at point OB, and 

the position of the center of the moving platform o is 

marked by o=[x,y]. Hence, the robot is a 3 dof 

manipulator with a degree of redundancy in the 

actuators. 

 
Figure 1. 4-RPR Kinematic Diagram. 

 

3. Dynamic Analysis of 4 RPR robot: 

Newton Euler Formulation 

This section is devoted to an overview on the dynamics 

of the 4 RPR parallel robot. Dynamic formulation of the 

limbs and the moving platform are carried out.  

 

3.1 Dynamic formulation of the limbs 

Figure 2 illustrate the free body representations of the 

limbs and the moving platform of the 4 RPR 

manipulator, where the forces at point Bi are FBi/S and 

FBi/N, in which N̂  is perpendicular to the limb and Ŝ  is 

along its direction. In the same way, the forces at point Pi 

are represented by FPi/S and FPi/N. and mia  are the velocity 

and acceleration of the limb center of mass. We assume 

that [ , , ]T

e ex ey eF f f r  is the only external disturbance 

force and moment acting on the robot. The moment of 

inertia in z-axis about the center of mass is denoted by 

miI  and the limbs are considered rigid bodies with a mass 

m. The Newton Euler equations are given by: 
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ext i miF m a  (1) 

mi

ext mi iI   (2) 

 

Where 
extF  is the sum of all external forces acting on 

each segment of the robot and mi

ext  is the sum of 

external moments in the z direction about the center of 

mass of each segment mi. 

 
Figure 2. Free body representation. 
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Where ˆ ˆ ˆ
S i N i Zg g S g N g Z    is the gravitational 

acceleration, and its components can be derived from the 

following equations: 
ˆ ˆ ˆ. ; . ; .S i N i Zg g S g g N g g Z    (6) 

 

From (3) through (5), /Bi NF , /Pi NF , /Pi SF and /Bi SF  are 

determined as follows : 
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Where /Bi NF  are the pivot reaction force, /Pi NF are the 

internal force between the segments and the platform, 

and /Bi SF are the actuator forces acting on the segments 

that can be considered as a tension force in the actuator 

denoted 
1 2[ , ,..., ]T

ir r r r .  

 

3.2 Dynamic formulation of the moving 

platform 

The dynamic analysis of the platform is accomplished 

using the same free body representation in Figure 2. The 

Newton Euler equations of the platform are given by: 

 
4

/ /

4

ˆ ˆ
ext e Pi S i Pi N i O

i

F Mg F F S F N Ma


       (11) 

 
4

/ /

1

ˆˆ ˆ ˆO

ext e i Pi S i Pi N i M

i

r Z T F S F N I Z


        (12) 

 

Now equation (11) can be written as: 
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The unit vector ˆ
iS is determined as follows 
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These equations are leading the motion of the 

manipulator, where , ,
T

e ex ey eF f f r     is the wrench 

applied on the platform, /Pi SF and /Pi NF  the forces 

interacting between the segments and the platform are 

derived from the limbs dynamics in the previous section.  

 

4. Motion Control of the 4 RPR Robot 

In motion control of a parallel robot, we assume that the 

controller calculates the necessary actuator forces to 

make the robot motion pursue a desired trajectory. 

We consider Equation (17) representing the general 

closed form dynamic model for a parallel manipulator: 

( ) ( , ) ( ) eM X X C X X X G X F F     (17) 

 

Where ( )M X , ( , )C X X , ( )G X and dF F  are: the mass 

matrix, the Coriolis centrifugal matrix, the gravity vector 

and the generalized forces applied to the platform center 

of mass plus the disturbance wrench, respectively. 

 

4.1 Controller Description 

The control method introduced in this paper is a PD 

controller shown in Figure 3. This controller consists of 

n PD controllers performing on each error component, 

where n is the number of the actuators. The PD 

controller is represented by D PK K  block. 

[ ]T

x yF F F r  stand for the output of the PD controller. 

 
Figure 3. Block diagram containing robot and controller. 

 
Using this configuration, each tracking error element 

denoted by [ ]x x y    , is treated individually by its 
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PD controller. The control effort is computed by the 

follow equation: 

d x p xF K K    (18) 

 

The actuator forces can be generated by: 
Tr J F  (19) 

 

The implementation of the PD controller can be directly 

done in the joint space by equation: 

d q p qr K K   (20) 

 

5. Simulations and results 

The desired trajectory of the moving platform is 

generated and given in Figure 4.  

 

 
Figure 4: Desired and generated path of the manipulator for PD 

control. 

 
Case 1: Without measurement noise 

As seen in Figure 4, the desired trajectory and the final 

one generated by the closed loop are identical. 

 
Figure 5: Tracking errors of the robot using PD controller. 

 
Figure 5 shows that the PD controller is of minimizing 

the tracking errors to less than 0.013 in position and less 

than 0.019 in orientation. 

 
Figure 6: Actuator forces of the robot generated by the PD 

controller. 

The actuator forces are illustrated in Figure 6. We can 

notice that since the robot moves in positive x and y 

directions the forces of the first and the third segments 

are dominant. 

 

Case 2: With measurement noise 

In this case, we consider that all the X variables are 

contaminated with a Gaussian noise. As we are using 

high gain PD controller, the quantity of noise is limited 

in this case. As presented in Figure 7 the tracking errors 

are not much increased compared to the case without 

noise.  

 
Figure 7: Tracking errors of the robot using PD controller with 

noise. 

Figure 8 shows that the necessary actuator forces to 

perform such operation are very oscillatory. Considering 

that high gains provided by PD controllers are used to 

adjust the tracking errors. The amplitude of noise is 

0.01% of the original signal, also the PD controller gain 

is higher than 104. So practically producing such actuator 

force is not feasible; hence, the tracking errors shown in 

Figure 7 are not possible.  

 
Figure 8: Actuator forces of the robot generated by the PD 

controller in presence of noise. 

 

6. Conclusion 

In this paper a dynamic study for the 4 RPR parallel 

robot is presented. A proportional–derivative controller 

architecture is described and applied on the dynamic 

model in order to analyze the motion control 

performances of the proposed structure. 
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