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Abstract 

The present work investigates the nanoscale vibration 

behavior of double-layered graphene sheets (DLGSs) resting 

on elastic medium taking into account effects of van der 

Waals (vdW) interactions. The analysis is carried out 

employing meshless method (MLSA) based on the nonlocal 

elastic plate theory. The DLGSs is modeled by a double thin 

elastic nanoplates continuum model which account for the 

small scale effect. The collocation method is adopted to solve 

the strong form of equilibrium equations and enforcing the 

boundary conditions. The efficiency of the proposed 

approach is demonstrated by a comparison with an exact 

solution computed by the Navier’s method. The effects of 

aspect ratio, stiffness of surrounding elastic medium and 

nonlocal parameter on the vibration behavior of (DLGSs) are 

performed. 
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1. Introduction  

Recently, nanomaterials such as Graphene sheets (GSs) have 

attracted considerable attention of the scientific community 

due to their superior properties. There exist three main 

categories for the modelings and simulations of 

nanomaterials: atomistic and molecular modeling, 

continuum mechanics and a combination of atomistic 

modeling and continuum mechanics. One of the updated 

continuum mechanics methods for analysis of nanostructures 

is the nonlocal elasticity theory proposed by Eringen [1]. In 

some cases, the analytical solution can be obtained when 

applying the nonlocal continuum mechanics, but in others, in 

which certain physical complexities cannot be interpreted or 

described by way of simple analytical expression, a 

numerical technique is needed. Certainly, the numerical 

simulation of nanostructures is usually made, in 

computational mechanics, using the mesh-based methods. 

Generating meshes with internal complex structures and 

external boundaries for the purpose of solving nanostructures 

problem using mesh-based methods is a difficult task. As 

alternative approaches to mesh-based method, new methods, 

qualified" mesh-free or meshless methods" have developed 

in recent years [2]. These methods do not require a mesh to 

build the approximation of the unknown field in the area but 

only a point cloud. 

In this work we develop a novel efficient nonlocal approach 

to study the free vibration of double-layered graphene sheets 

(DLGSs) taking into account the effects of small length 

scales and the van der Walls interactions between the two 

layers. It is built by coupling a meshless method based on the 

Moving Least Squares Approximation (MLSA) and an 

elastic nanoplate nonlocal theory. 

 

2. Problem statement 

Let us consider a double layered graphene (DLGSs) in which 

each GSs has length 𝐿1, width 𝐿2, thickness ℎ, mass density 

, Young’s moduli 𝐸1, 𝐸2 and Poisson’s ratio 𝜈12, 𝜈21. The 

two layers of DLGSs interact via van der Waals forces and 

are surrounded by an external elastic medium as shown in 

(fig.1 (a)) and subjected to transverse load 𝑞. A Cartesian 

coordinate system (𝑂, 𝑥1, 𝑥2, 𝑥3) is used for (GSs).  

 

2.1 Mechanical modeling  

The double layered graphene sheets (DLGSs) are modeled as 

a thin double orthotropic elastic nanoplates. The elastic 

medium is modeled by Winkler-Pasternak foundations 

represented by continuously distributed vertical springs with 

stiffness coefficients 𝑘𝑤 and 𝑘𝑝 depicted in fig.1 (b).  

 

Figure. 1- (a) Double-layered graphene sheets (DLGSs) 

surrounded by on an elastic medium, (b) Double elastic 

nanoplates resting in elastic Winkler-Pasternak foundations 

 

2.2 Nonlocal constitutive relations of elastic 

continuum orthotropic nanoplate 

According to the nonlocal elasticity theory proposed by 

Eringen [1], the stress at a reference point 𝑥 of a body is a 

function of the strain field at every point 𝑥′ in the medium. 

The stress tensor of the nonlocal elasticity is defined by 

ℒ𝜎𝑖𝑗
𝑛𝑙 = 𝜎𝑖𝑗

𝑙                           (1)                                                   
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where ℒ = (1 − 𝜇𝛻2) is a the linear differential operator and 

𝜇 = (𝑒0𝑎)2 is the nonlocal parameter, 𝛻2 is the Laplacian 

operator, 𝑎 is an internal characteristic length, 𝑒0 is a 

nonlocal scaling parameter, 𝜎𝑖𝑗
𝑙  is the local stress tensor 

related to the strain tensor by the generalized Hooke’s law. 

 

2.3 Van der Waals force between layers and 

applied external load 

The resultant effective transverse load applied on the 𝑗𝑡ℎ 

layers can be written as: 

𝑞𝑒
(𝑗)

= 𝑞 − 𝑐 (𝑢3
(𝑗)

− 𝑢3
(𝑖)

) − 𝑘𝑤𝑢3
(𝑗)

+ 𝑘𝑝𝛾𝑢3,𝛾𝛾
(𝑗)

         (2) 

where 𝑘𝑤, 𝑘𝑝𝛾 and 𝑐 are respectively the Winkler spring, 

Pasternak shear in two orthogonal directions, 𝒄 the van der 

Waals coefficient, and 𝑢3 is the transverse displacement, 𝛾𝛾 

designates the two directions (𝛾 = 1,2). 

 

2.4 Governing dynamic equations 

The nonlocal governing equations of motion for each 

orthotropic nanoplate (𝑗 = 1,2) coupled to an elastic 

medium are expressed by: 

−𝐷𝛼𝛽𝛾𝛿𝑢3,𝛾𝛿𝛼𝛽
(𝑗)

+ ℒ [𝑞𝑒
(𝑗)

− 𝐼0𝑢̈3
(𝑗)

+ 𝐼2𝑢̈3,𝛼𝛼
(𝑗)

] = 0               (3) 

Where the inertia terms is defined as 𝐼𝑘 = ∫ ρ𝑧𝑘𝑑𝑧
ℎ

2

−
ℎ

2

, (𝑘 =

0,2) and 𝐷𝛼𝛽𝛾𝛿  are the bending rigidities given by 𝐷𝛼𝛽𝛾𝛿 =

∫ 𝑐̂𝛼𝛽𝛾𝛿𝑧2𝑑𝑧
ℎ

2

−
ℎ

2

, 𝑞𝑒
(𝑗)

 represents the distributed load and 𝑐̂𝛼𝛽𝛾𝛿  

are the elastic modulus components. 

 

2.5 Boundary condition  

All edges of nanoplates are simply supported (SSSS): 

u3
(𝑗)

= u3,𝑖𝑖
(𝑗)

= 0, 𝑖𝑛 𝑥𝑖 = 0, 𝑥𝑖 = 𝐿𝑖 𝑗 = 1,2, 𝑖 = 1,2         (4) 

 

2.6 Exact analytical expressions of vibration 

natural frequencies [4] 

The developed coupled equations eq. (3) have been solved 

by Navier’s approach for (SSSS) boundary conditions. The 

frequencies can be calculated as: 

𝜔𝑚𝑛
1 = √

𝐷𝑒

Γ𝑚𝑛Λ𝑚𝑛
 and 𝜔𝑚𝑛

2 = √
𝐷𝑒+2𝑐Λ𝑚𝑛

Γ𝑚𝑛Λ𝑚𝑛
                            (5) 

with Γ𝑚𝑛 = 𝐼0 + 𝐼2(𝛼2 + 𝛽2), Λ𝑚𝑛 = 1 + 𝜇(𝛼2 + 𝛽2)  

and 𝐷𝑒 = (𝐷11𝛼4 + 2𝐷̅12𝛼2𝛽2 + 𝐷22𝛽4 + 𝑘𝑤Λ𝑚𝑛 +

𝑘𝑝Λ𝑚𝑛(𝛼2 + 𝛽2)) with 𝛼 = (
𝑚𝜋

𝐿1
) , 𝛽 = (

𝑛𝜋

𝐿2
), 𝐷𝑖𝑗(𝑖, 𝑗 =

1,2) are the bending stiffnesses of orthotropic double layer 

graphene sheets. 

   

3. Solution procedure 

 

3.1 MLSA Discretization. 

The displacements field of the (DLGSs) can be expressed 

according to the (MLS), as follows: 

{𝑢3
(𝑗)

} = ∑ 𝜱𝑰(𝑥𝛿) {𝑢3𝐼
(𝑗)

}𝒏
𝑰=𝟏   (𝑗 = 1,2), (𝛿 = 1,2),             (6)               

where 𝑛 is the total number of nodes used to discretize the 

domain, 𝜱𝑰 and 𝑢3𝐼 denote the shape function of the (MLSA) 

and displacement value for each nanoplates associated with 

node 𝐼, respectively, assuming the nodal parameter has the 

following motion expression 〈𝑢𝑧𝐼
1 , 𝑢𝑧𝐼

2 〉𝑇 = {X̅}𝒆𝒊𝒘𝒕 =

〈𝑢̅𝑧
1, 𝑢̅𝑧

2〉𝑇𝒆𝒊𝒘𝒕, where 𝑖 is the imaginary unit, 𝑡 indicates time, 

〈𝑢̅𝑧
1, 𝑢̅𝑧

2〉𝑇is the eigenvector and 𝜔 is natural frequency, after 

same manipulation we obtain the fallowing equation: 

(−𝜔2[𝑀] + [𝐾]){X̅} = 0.                 (7) 

in which the stiffness and mass matrix are defined by 

[𝐾] = [𝐶]𝐼 ∙ [𝐵]𝐼, [𝑀] = [𝐶]𝐼𝐼 ∙ [𝐵]𝐼𝐼, where [𝐶]𝐼, and  

[𝐶]𝐼𝐼 are matrices dependent on coefficients of the elasticity 

stress tensor and (vdW) force coefficients, [𝐵]𝐼 and [𝐵]𝐼𝐼  are 

the matrices of derivatives of MLS shape functions.  

4.  Validation of the proposed approach  

 

4.1 Vibration of a square double layered 

graphene (DLGSs) 

Consider a square double layered graphene (DLGSs) 

embedded in an elastic homogeneous medium of side 𝐿 =

𝐿1 = 𝐿2 =  10.2𝑛𝑚 and thickness ℎ = 0.34𝑛𝑚, having the 

material properties [2]: Young’s modulus 𝐸1 = 1765𝐺𝑃𝑎, 

𝐸2 = 1588𝐺𝑃𝑎, Poisson’s ratio 𝜈12  =  0.3, 𝜈21  =  0.27, 

mass density  =  2.3𝑔/𝑐𝑚3. The considered numerical 

values of Winkler spring 𝑘𝑤, Pasternak shear 𝑘𝑝 and the van 

der Waals coefficient c are respectively: 𝑘𝑤 =

1.13 1018𝑃𝑎/𝑚, 𝑘𝑝 = 1.13𝑃𝑎/𝑚, 𝑐 = 4.15 1019𝑃𝑎/𝑚. As 

the elastic medium is homogeneous then 𝑘𝑝1 = 𝑘𝑝2. The 

nonlocal parameter  belonging to the range [0, 2𝑛𝑚2].The 

(DLGSs) is assumed to be free from any in-plane or 

transverse loadings 𝑞 = 0. The considered number of grid 

points is 11𝑥11. 

 

4.2 Numerical results and discussions 

4.2.1 Natural frequencies of (DLGSs) 

The numerical results for natural frequencies of (DLGSs) 

computed by the proposed approach (MLS) solution 

compared to the exact solution (eq. (5)) are presented in 

Table. 1.  

𝝁 Natural 

frequencies 
Exact 

Solution(GHz) 
MLS 

Solution(GHz) 

0 𝝎𝟏 

𝝎𝟐 

0.03839 

0.33132 
0.03876 

0.33659 

1 𝝎𝟏 

𝝎𝟐 

0.04568 

0.39418 
0.04504 

0.38254 

2 𝝎𝟏 

𝝎𝟐 

0.05296 

0.45704 
0.05225 
0.44326 

 

Table. 1 - Comparison of natural frequencies (GHz) with 

the exact solution [3] for a (SSSS) square (DLGSs). 
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The obtained numerical results are in good agreement with 

the analytical solution given by (eq. (5)).  

 

4.2.2 Effect of nonlocal parameter and length 

on natural frequencies of (DLGSs) 

In order to illustrate the small scale and length effects on 

natural frequencies of (DLGSs), we define frequency ratio 

as: 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝜔𝑛𝑙

𝜔𝑙
. The variation of frequency 

ratio with length is plotted in Figure. 2, for simply supported 

square orthotropic double layered graphene sheets, having 

the following proprieties [4], 𝐸1 = 𝐸2 = 1.06 𝑇𝑃𝑎, 𝜈12 =

𝜈21 = 0.25, 𝜌 = 2250𝑘𝑔/𝑚3, 𝑐 = 4.151019 𝑃𝑎/𝑚 for 

each nanoplate. The results, in the absence of elastic 

foundation, have been shown for different values of nonlocal 

parameters (0 𝑛𝑚2 −  3 𝑛𝑚2) and different values of length 

(5 𝑛𝑚 − 30𝑛𝑚). This plot shows that lower ratio is obtained 

at higher value of nonlocal parameter for the 1st (top 

nanoplate) and 2nd (bottom nanoplate), and the frequency 

ratio increase with length. 

 
 

Figure. 2 - Variation of frequency ratio for the 1st and 2nd   

nanoplate with length. 

 

4.2.3 Effect of elastic foundation on natural 

frequencies of (DLGSs) 

In this subsection, we have investigated the influence of 

surrounding medium on the natural frequencies of (DLGSs). 

The considered numerical data are [5]: Young’s moduli 𝐸1 =

1465 𝐺𝑃𝑎, 𝐸2 = 1588 𝐺𝑃𝑎, Poisson‘s ratio 𝜈12 = 𝜈21 =

0.30, mass density 𝜌 = 2250𝑘𝑔/𝑚3, van der Waals 

coefficient 𝑐 = 4.15 1019 𝑃𝑎/𝑚. First, we have considered 

(𝑘𝑤 = 200) with simply supported edge condition, next, we 

have taken (𝑘𝑝 = 0) with the same edge condition. 

 
 

Figure .3 -Effect of Winkler-Pasternak coefficient on 

frequency ratio. 

 

Different values of nonlocal parameters are considered. It is 

observed from the figure.3, that frequency ratio increases 

linearly by increasing the stiffness of the elastic foundation 

either through the springy (Winkler coefficient) or the shear 

effect (Pasternak coefficient), we can also conclude that the 

stiffness of surrounding elastic medium increases when the 

nonlocal effect decreases. 

 

5. Conclusion 

The free vibration of double-layered graphene sheets 

(DLGSs) surrounded by an elastic medium has been 

analyzed by an approach which combines a nonlocal 

continuum model of classical plate theory and a meshless 

method based on MLS approximation (MLSA). The 

considered (MLSA) is based on a strong formulation of 

problem in order to avoid numerical integrations. The 

collocation method is adopted for the derivation of discrete 

system and enforcing boundary conditions. A comparison to 

an analytical solution shows the effectiveness of the 

proposed approach. The effects of length, nonlocal 

parameter and elastic foundation on the vibration behavior of 

(DLGSs) are examined. It is observed that the nonlocal effect 

depends on surrounding elastic medium. As the stiffness of 

surrounding elastic medium increases, the non local effect 

decreases and increases as the size of the graphene sheet is 

decreased.  
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