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Method of Fundamental Solutions for nonlinear elastic problems
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Abstract:
The aim of this work is to propose an approach which
combines the meshless method called Method of Fun-
damental Solutions (MFS) and the Asymptotic Numeri-
cal Method (ANM) to solve two-dimensional nonlinear
elastic problems. The ANM transforms the nonlinear
problems into a sequence of linear problem which can
be solved by MFS. This last consists to approach the so-
lution of the linear problem by a linear combination of
fundamental solutions with respect to some source points
which are located outside the domain. Numerical results
are presented for a simple traction square plate in large
deformation framework to show the efficiency of the pro-
posed algorithm.

Keywords: Method of Fundamental Solutions, Asymp-
totic Numerical Method, nonlinear computation, La-
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1 Introduction
Many numerical methods have been proposed for the res-
olution of partial differential equations based on spatial
discretization, which make it possible to obtain a finite
number of unknowns. The Finite ElementMethod (FEM)
is the standard technique for this kind of computations.
But under the last fifteen years a new mesh free method
has been under extensive research. In the family of mesh-
less methods, we find the Method of Fundamental So-
lutions (MFS). The MFS is a collocation-type method,
easy-to-use and has been widely applied to various en-
gineering and science problems, in which the solution
of the homogeneous problems is expressed by a linear
combination of the fundamental solutions of the oper-
tors with respect to some source points located outside
the domain. This technque has been extended to non-
homogeneous partial differential equations by using the
Radial Basis Functions (RBF) for the determination of
the particular solution. Then, the original problem is re-
duced to determining the unknown coefficients of the lin-
ear combination. The effectiveness of the MFS has been
proven through its application on linear problems such

as the Biharmonic, the Helmholtz, the Poisson, the lin-
ear elasticity Cauchy problem and the non-homogeneous
linear elasticity equations. In 2009, Li et al. [3] have cou-
pled the Method of Fundamental Solutions (MFS) with
the Radial Basis Functions (RBF) and the Analog Equa-
tion Method (AEM), to solve nonlinear elliptic problems,
the resolution of the obtained nonlinear equations is done
by iterative algorithms. Tri et al. [4] have proposed in
2011 a coupling of the Asymptotic Numerical Method
(ANM) and the Method of Fundamental Solutions asso-
ciated with the RBF and AEM to solve the nonlinear Pois-
son problem in a limited framework, which permits one
to compute a part of nonlinear response curves up to the
radius of convergence. In 2012, Tri et al. [5] have pre-
sented a continuation algorithm able to compute the en-
tire branch solution using the same basis functions. In
this work, we use an algorithmwhich couples the Asymp-
totic Numerical Method with the Method of Fundamen-
tal Solutions for solving a nonlinear elasticity problem in
two-dimensional framework in the context of large defor-
mations. The Asymptotic Numerical Method (ANM) [2]
is a family of algorithms that solves nonlinear problems
thanks to an asymptotic development. Indeed, the ANM
allows to search the branch solutions in the form of power
series with respect to a path parameter "a". In this way,
we transform the initial nonlinear problem into a recur-
ring sequence of linear problems with the same tangent
operator. The layout of this paper is as follows. In section
1, we present the equations governing the equilibrium of
solids in nonlinear elasticity. Thenwe discuss theAsymp-
totic Numerical Method (ANM) in section 2. Afterward,
we show how to solve the resulting linear problems us-
ing the coupling (MFS-RBF-AEM) in section 3. Finally,
we validate our approach by a numerical application in
nonlinear deformation computation of a square plate.

2 Mathematical formulation
The strong form of the equilibrium condition of a struc-
ture occupying the domain Ω with a boundary ∂Ω, for
an elasticity problem including geometric nonlinearity, is
based on a Lagrangian formulation. Since the equations
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are formulated with respect to a reference configuration,
the stationary problem of nonlinear elasticity is expressed
by the following equations:

γ =
1

2

(
T∇(U) +∇(U) +T ∇(U)∇(U)

)
S = C : γ

Π = F . S
∇ . Π + b = 0

(1)
where Π is the first Piola-Kirchhoff stress tensor associ-
ated with a point of the domain Ω in its reference configu-
ration, b is a body force term, F is the deformation gradi-
ent tensor defined by F = I+∇U , where I is the identity
tensor, S, γ, U and C are respectively the second Piola-
Kirchhoff stress tensor, the Green-Lagrange strain tensor,
the displacement field and the fourth-order stiffness ten-
sor. The equations defined in (1) are complemented by the
boundary conditions on the boundary ∂Ω. This bound-
ary ∂Ω is subjected to the displacements and the traction
data on the disjoint complementary parts of the border
∂Ωu (Dirichlet Boundary conditions) and ∂Ωf (Neumann
Boundary conditions), respectively (∂Ω=∂Ωu ∪∂Ωf and
∂Ωu ∩ ∂Ωf = 0). The boundary conditions are given by:{

Π · n = T d in ∂Ωf

U = Ud in ∂Ωu
(2)

where n is the unit normal at ∂Ω, Ud and T d are respec-
tively displacements and the traction data.

Our study will be limited to the two-dimensional struc-
tures framework U ≡ {U} = 〈u1 u2〉.

3 ANM solution strategy
In this section, we apply the ANM algorithm to the non-
linear problem (1). The development in power series
makes it possible to transform the nonlinear problem into
a sequence of linear problems. Recall that within the
framework of ANM, it is preferable to formulate the prob-
lem to be solved in a quadratic form, which is practical to
obtain the reccurence formula in a easy way when gener-
ating linear problems. The fundamental physical quanti-
ties of the problem can be represented by the mixed vec-
tor U = {Π, S, γ, U} and a loading parameter λ which
allows to determine all the equilibrium positions of the
problem. In this technique, the variables U and λ are de-
veloped using a asymptotic expansion truncated at order
P with respect to a path parameter "a" in the neighbour-
hood of a known starting solution (U0, λ0), thus, we can
write: {

U
λ

}
=

{
U0

λ0

}
+

P∑
i=1

ai

{
Ui

λi

}
(3)

By injecting the developments (3) into the problem (1)
and by regrouping the terms of the same power of "a",
we obtain a recurring sequence of linear problems hav-
ing the same tangent operator for all orders depending on
the geometry and the initial stress S0. This procedure in-
volves calculating the ith order of the series (3) with the
ith−1 orders previously calculated. An additional equa-
tion called the closing equation must be added to define
the path parameter "a". Several choices are possible. The
most used is a pseudoarc-length parametrization. It cor-
responds to the projection of the pair (U−U0, λ−λ0), ie,
the displacement and the load parameter, on the tangent
direction U1 , λ1.

a = 〈U − U0〉 {U1}+ (λ− λ0)λ1 (4)

The step of development in series is continued with a con-
tinuation step which makes it possible to obtain the whole
solution branch [2]. The continuation technique is related
to the determination of the convergence radius "a" of the
series (3). In this article, the validity range of the solu-
tion is defined by the maximal value amax of the control
parameter "a". Requiring that the relative difference be-
tween the displacements at two consecutive orders must
be smaller than a given parameter ε leads to

amax =

(
ε
‖U1‖
‖UP ‖

) 1

P − 1 (5)

4 MFS-MPS spatial discretization

A meshless method was presented, which couples the
Method of Fundamental Solutions (MFS) with Radial Ba-
sis Functions (RBF) and the Analog Equation Method
(AEM), to solve the previous linear problems with the
tangent operator computed at the starting point, in this
method, the AEM is used to convert the governing equa-
tion (1) which expanded with power series into a corre-
sponding linear inhomogeneous equation, so that a sim-
pler fundamental solution can be employed. Then, the
RBFs and the MFS are, respectively, used to construct
the expressions of particular and homogeneous solution,
from which the main unknown of the problem is approx-
imated by a superposition of the homogeneous solution
and of the particular solution.

{U(Mi)} =
∑Ns

j=1

[
Ûh(Mi, Qj)

]{αh
j

βh
j

}

+
∑N

j=1

[
Ûp(Mi,Mj)

]{αp
j

βp
j

} (6)
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Where Qj(X
j
1 , X

j
2) and Mi(x

i
1, x

i
2) are the coordinates

of theNs source points taken on a fictitious boundary Γf

and coordinates of the N points of the domain respec-
tively.
[Ûh(Mi, Qj)] represents the fundamental solutions ma-
trix of the linear elasticity operator in two-dimension.
These fundamental solutions are given in [1].
[Ûp(Mi,Mj)] represents the particular solutions matrix.
For a Radial Basis Function (RBF) of the type Thin Plate
Spline (TPS) rnlog(r) the particular solution is given in
[1].
After satisfying all equations of the original problem (1)
and (2) at collocation points, a system of equations is rep-
resented by the unknown coefficients can be obtained us-
ing SVD(Singular Value Decomposition) solver

5 Numerical application
To evaluate the performance and the robustness of our al-
gorithm, we propose to apply it to the nonlinear prob-
lem of a square plate of side L = 100mm in plane
stress, the structure is subjected at both ends of a stress
σ11 = λσ0 with σ0 = 100MPa and λ increases gradu-
ally to determine all equilibrium positions. This structure
is elastic, homogeneous and isotropic of Young’s modu-
lus E = 200.103MPa and Poisson coefficient ν = 0.3.
In this example, the fictitious boundary is a circle of ra-
dius R = 150mm . We take N = 121 points distributed
over the domain occupied by the plate and (Ns = 40)

is the number of points on the fictitious boundary chosen
equal to the number of the boundary points in the domain
(see Figure 1).
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Figure 1: domain Ω, collocation points and source points

The results obtained from this example are shown in
figure.2. In this figure, we represent the obtained so-
lution (Load-Displacement) of the point M1 illustrated
in figure.1. Compared to the finite elements method ,
we remark that the meshless method and the asymptotic
method give a good solution for the nonlinear problem.
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Figure 2: Load-displacement curve for 10 branches with
a truncation order P = 15 and a tolerance of 10−6

6 Conclusion
In this work, we have extended the Method of Fundamen-
tal Solutions to nonlinear elasticity problems by associ-
ating it with Asymptotic Numerical Methods. The nu-
merical results for two-dimensional problems show the
efficiency of the proposed algorithm using a comparison
with the Finite Element Method coupled with the ANM.
The proposed technique is tested successfully. Work is
currently in progress to study the instabilities of the struc-
tures by introducing the bifurcation indicators and the
Pade approximants.
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