
13
ème

 Congrès de Mécanique  11 - 14 Avril 2017   (Meknès, MAROC) 

 

 

THIRD DISCONTINUOUS GALERKIN METHOD FOR  

TRANSCRITICAL FLOW 

 

A.  AMAHMOUJ
1
,  E. M. CHAABELASRI

 1,2
, N. SALHI

1
 

 

1. LME, Faculté des Sciences, BP 717, 60000 Oujda, Maroc + a.amahmouj@gmail.com 

2. ENSA, BP 03, Ajdir Al-Hoceima, Maroc + chaabelasri@gmail.com 

 

 
Abstract : 

This paper presents a new one-dimensional (1D) third-

order Runge–Kutta discontinuous Galerkin (RKDG3) 

scheme for shallow flow. The shallow water equations 

that adopt water level as a flow variable are solved by an 

RKDG3 scheme to give piecewise linear approximate 

solutions, which are locally defined by an average 

coefficient and a slope coefficient. Extra numerical 

enhancements are proposed to amend the local 

coefficients associated with water level in order to 

maintain the well-balanced property of the RKDG3 

scheme for real applications. Friction source terms are 

included and evaluated using splitting implicit 

discretization, implemented with a physical stopping 

condition to ensure stability. steady and unsteady 

benchmark tests with/without friction effects are 

considered to demonstrate the performance of the present 

model. 

Key words. Shallow water flows, Runge-Kutta 

Discontinuous Galerkin.  

 

1. Introduction  

A number of engineering and environmental applications 

are characterized by free surface flows in which the 

typical horizontal length scale is large compared with the 

vertical scale. In this case, the flow can be approximated 

by the shallow water equations (SWE). 

Numerical simulation of free surface flows usually 

involves the solution of some difficult tasks, such as the 

capture of sharp discontinuities due to hydraulic jumps 

or bores in shallow flows, the flood-wave propagation 

over an initially dry land and its alternate recession, with 

consequent drying of the bottom, or the development of 

fast-moving flows over an irregular topography. In last 

few decades, computational models based on the solution 

of the SWE have been developed to study a variety of 

free-surface flows with finite difference, finite volume 

and finite element methods (see, e.g. [2] and references 

therein). More recently, discontinuous Galerkin methods 

(DG) have appeared as an alternative to finite volume or 

high-order finite difference schemes, with a number of 

advantages: these allow efficient p- and h-adaptivity, 

local grid refining and parallel computations. 

In this work, we propose the numerical solution of the 

SWE with the DG method and expanded it with 

numerical techniques in order to satisfy good shock 

capturing due to dam break. The accuracy of the method 

is evaluated by comparison against a survey of analytical 

test.  

 

2. Governing shallow water model  
The SWE for long-wave propagation may be derived by 

intentions by assuming negligible vertical particle 

acceleration and thus hydrostatic distribution. Including 

bed slope and friction effects the SWE may be adequate 

for describing a wide range of 1D and 2D shallow flow 

problems. In recent years, it has been generally accepted 

that the use of the surface water elevation ƞ(x, t) instead 

of the water depth h(x, t) as a flow variable in the 

mathematical shallow water model may lead to a well-

balanced numerical scheme that preserves the solution of 

lake at rest at the computational level [8, 9, 13, 14]. 

Furthermore, adopting ƞ as a flow variable improves the 

quality of a slope limiting process for RKDG method [7, 

12]. In a matrix form, the 1D conservation laws of the 

nonlinear hyperbolic SWE may be written as [8, 14] 

t xU F S                (1) 

In  which,    [ , ]TU q . ( , )q x t  is the unit-width 

discharge. ( , ) ( , ) ( )x t h x t z x    with ( )z x  being 

the ground elevation. ( , ) ( , ) / ( , )u x t q x t h x t  is the 

depth-average velocity. t and x denotes, respectively, the 

time and space coordinate. 
2 2[ , / ( 2 ) / 2]TF q q h g z     is the flux vector 

such that /J F U    has two real eigenvalues   
1,2 u c    and two associated real eigenvectors 

1,2 1,2[1, ] Te , where c gh  is the shallow wave 

speed and g  is the gravitational acceleration. Obviously, 

the system is strictly hyperbolic if 0h   [11]. 

b fS S S  is the vector containing the bottom 

topography and friction source terms.   [0, ]T

b bSS   

with 0bS g S  and 0 /S Z x   . [0, ]T

f fSS  , 

with 
f fS C u u   with 

2 1/3/f MC gn h  and Mn  

being the Manning coefficient. 

3. Discontinuous Galerkin method 

formulation  
The 1D domain, on which the governing equations are 

solved, has a length of L  and is divided by the interface 
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points 
1/2 3/2 1/20 ... Nx x x L      into N  

uniform intervals(cells). The size of an arbitrary cell 

1/2 1/2[ , ]i i iI x x   is 
1/2 1/2i ix x x     and the 

nodal points is at 1/2 1/2( ) / 2i i ix x x   . When 

solving the conservation laws of the SWE(1) using a 

finite element Galerkin method, a kth  order 

approximation of the flow variables 

( , ) [ ( , ), ( , )]T

h h hU x t x t q x t   is sought, which 

belongs to the finite dimensional space 

: ( )
i

k

h iI
V P P P I   and ( )k

iP I  is the polynomial 

space in 
iI  of degree at most k  [6]. The approximation 

gaves ( 1)k th  order of accuracy in space. In order to 

derive the RKDG discretized governing equation, a test 

function 
h hv V   is introduced to (1), which is then 

integrated over iI . Subsequently, integrating by part the 

flux derivative term gives a weak form to (1) 

1/ 2 1/ 2 1/ 2

1/ 2

( , ) ( ) [ ( ( , ) ( ) ( ( , ))

( ) ( ( , )) ( ) ] ( ( , )) ( )

i

i i

t h h h i h i h i
I

h i h h h h
I I

U x t x dx F U x t x F U x t

x F U x t x dx S U x t x dx

 

  

  



  

 



 
  (2) 

A finite number of local basis functions are introduced 

using the 
2L orthogonal  basis of Legendre 

polynomials [5] on iI  to locally expand the flow 

variables. The expanded flow variables are then 

substituted into the weak formulation (2) and a test 

function is chosen to specifically coincide with a basis 

function. As a result the DG space discretisation of (1) 

reduces to an independent a second- order scheme is 

considered for practical simulations and only two 

degrees of freedom (k.e. 1k  ) are required [7]. 

Therefore, at each cell, the local linear approximate 

solution ( , )hU x t  is determined by two polynomial 

coefficients  0 1( ), ( )i iU t U t , i.e. 

0 1

1/ 2( , ) ( ) 2 ( )( ) /    ( )
i

h i i i iI
U x t U t U t x x x x x            (3) 

where 
0( )iU t  is the vector of the averaged flow 

variables at the cell centres and 
1( )iU t contains the 

corresponding slope coefficients. The degrees of 

freedom  0 1( ), ( )i iU t U t   are stored and evolved locally 

in each cell, starting by the Legendre basis [5]. The 

initial values of averaged for flow variables is written as 

(refer [7] for further details) 

0,1 0 1/ 2 0 1/ 2( ) ( )
(0)

2

i i
i

U x U x
U  

                              (4) 

The detached ODEs 
0,1( (0) / )idU dt  for the degrees of 

freedom are then spatially approximated by the discrete 

operators 
0,1

iL  

0,1 0,1 0,1 0,1 0,1

1 1/ ( , , )i i i i idU dt L U U U    (5) 

The local operator may be referred to as DG2 operators 

and, by choosing the correct Gaussian local points, 

written as 

0 0
1/ 2 1/ 2

1
[ ( )]i ii b iL F F xS U

x
    


                    (6) 

1 1
0 0 0

1/2 1/2

1 1
0 0

3
( ) ( )

3 3

3
( ) ( )

6 3 3

 


      

 

  
     

 

i i
i ii b i b i

i i
b i b i

U U
L F F F U F U

x

U Ux
S U S U

        (7) 

The local approximate solution can fall discontinuous at 

the interface points 1/ 2ix   and 1/ 2ix  . Therefore, the 

fluxes therein 
1/2( ( , ))h iF U x t

 are replaced by the 

Godunov-type numerical fluxes 

1/2 1/2 1/2( , )i i iF F U U 
    as in a finite volume 

scheme. 1/ 2iU 

 , respectively, denote the face values of 

the flow variables at the left and right-hand sides of cell 

interface 1/ 2ix  , which are also referred to as Riemann 

states. Therefore F  represents the two argument 

numerical flux functions defined by the Riemann states 

and can be evaluated by a Riemann solver. It should be 

noted that (6) and (7) only contain the topographic 

source terms and treatment of the friction source terms. 

When reconstructing the Riemann states and hence 

evaluating the interface fluxes, it is essential to restrict 

the local maximum slope of the flow variables by means 

of a slope limiter. The slope limiting step damps the 

spurious oscillations would otherwise order numerical 

scheme. The minmod slope limiter [5, 15] is used in this 

work for better stability 
1

1 0 0 0 0

1 1min mod( , , )i x i i i i iU F U U U U U            (8) 

1

iU  denote the limited vector of slope coefficients and 

accordingly the face values of the flow variables are 

evaluated by 
1

0
1/ 2i iiU U U



   . When flow calculation 

occurs in a dry cell or a wet cell adjacent to a dry cell, 

minmod limiting process in (8) is deactivated to give 
1

1
i iU U  in order to maintain better numerical stability.  

A two-stage monotonicity-preserving RK time 

integration [10] is implemented to achieve second-order 

accuracy in time 
0,1 1/2 0,1 0,1( ) ( ) ( )n n n

i i iU U t L          (9) 

0,1 1 0,1 0,1 1/ 2 0,1 1/ 21
( ) ( ) ( ) ( )

2

n n n n

i i i iU U U t L        (10) 

The stability of the above explicit RKDG2 scheme is 

controlled by the CFL criterion and the CFL number 

should be, at most, equal to 0.333 to ensure stability [5]. 

The CFL number is set to 0.3 for all the test cases in this 

work. as previously, this tight restriction on time step 

represents the main drawback of an explicit RKDG 

method. 

 

4. Results and discussions 
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In this test, a wide rectangular channel with a horizontal 

and frictionless bed was considered. The resulting 

governing equations reduced to conservation laws 

without source term. The channel was 1m in length. The 

dam was located at 0.5m from upstream. Initially, the 

upstream water depth was 1m and downstream water 

depth was set to 0.5m. Results are shown in Figure 1. 

The first one represent the free surface water depth and 

the second is the water velocity at 0.1s.  The numerical 

solutions of water depth and velocity are in good 

agreement with exact solution and finite volume Roe 

scheme. The results show that all tow numerical flux 

functions capable of capturing the shock within the 

domain. The zooming snapshots performed show that the 

RKDG flux function has the best solution among the 

evaluated Roe flux function. 

 

 
Figure 1: Dam break problem: Free water surface profile 

(Top) and flow velocity (bottom). 
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