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Abstract 

As the classical Fickian theory has shown several 

shortcomings in describing mass transport in complex 

structured media, we here propose a new model that 

investigates the permeation behavior of a penetrant through 

a viscoelastic polymeric membrane. We choose the extra 

stress tensor as an additional structural state variable to 

track known the viscoelastic behavior of the polymer. We 

have modified the nonlinear Maxwell rheological model to 

incorporate mass transport. A set of two nonlinear coupled 

and partial differential equations are derived to describe the 

time evolution of the stress and concentration. Two 

dimensionless parameters, namely: a diffusion–Deborah 

number De and a diffusion–stress coupling constant emerge 

naturally in the dimensionless form of the governing 

equations. We have compared our theoretical predictions 

with experimental data taken from the literature and 

corresponding to the acetone/rubber mixture. A good 

agreement is observed. 
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1. Introduction 

Today, several topical engineering and technological 

areas exploit the use of the permeation process in their 

processing. Examples of industrial applications include, but 

not limited to, packaging, biomedical devices, drug delivery 

systems etc. Recall that in simple unstructured media such 

as fluids, solids and rubber polymers, the diffusion process 

can be well described by the classical Fickian theory 

expressing that the diffusion mass flux is linearly 

proportional to the gradient of penetrants concentration. 

However, in complex media such as glassy polymers and 

composites, many experimental [1] (and references therein) 

and theoretical investigations [2-6] have shown that mass 

transport might markedly deviate from the square root 

kinetics of the mass-uptake predicted by Fick’s laws in a 

sorption process. This kind of diffusion is called non 

Fickian or viscoelastic. Indeed, the macromolecular internal 

structure of the polymer changes locally to accommodate 

the diffusing small molecules of the solvent and as a result, 

the polymeric membrane deforms and swells leading to the 

creation of internal stresses. This stress-diffusion coupling 

has since been recognized as the main factor responsible for 

such observed deviations. In this contribution, we present a 

viscoelastic model that extends Fick’s laws and 

incorporates explicitly the abovementioned coupling. The 

governing equations are scaled and two dimensionless 

numbers are identified: the diffusion-Deborah number and a 

coupling constant. Finally, we focus on the permeation 

process of a solvent through a membrane and compare our 

calculated profiles with experimental data corresponding to 

the acetone/rubber mixture taken from the literature [6].  

2. Governing equations  

 The system considered in this investigation is a two-

component mixture composed of a solvent (a simple fluid) 

and a viscoelastic polymeric membrane (a complex 

medium). We shall limit ourselves to a one-dimensional 

flow-free diffusion occurring in binary mixtures kept at a 

constant temperature and under mechanical equilibrium. To 

describe our system, we choose the state variables that are 

the solvent mass fraction � and the extra stress tensor	�. 

The solvent mass conservation into the polymer in the 

absence of chemical reactions is given by the continuity 

equation. 

� ���� = − �	
��  

  

(1) 

 

where � is the global mass density and J is the diffusion 

mass flux density, t is time and x stands for the x-direction 

of the permeation. By requiring the compatibility of 

diffusion with non-equilibrium thermodynamics [4-5], the 

driving force for mass transport is the gradient of the 

chemical potential; μ = μ
c, σ� that is concentration and 

stress dependent. Thereby, the diffusion mass flux of the 

solvent particles into the viscoelastic polymer membrane 

reads as: 


 = −��
�� ����� − �
�, �� ����� 
 

(2) 

 

Where D
�� is the concentration dependent diffusivity 

coefficient of the solvent and E
c, σ�	is a diffusion-stress 
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coupling functional which also depends on the 

concentration and on the stress. Note that Equation (2) 

clearly extends Fick’s first law by the addition of a new 

term which considers the effects of the stress on the 

transport properties. If the functional E is equal to zero, 

equation (2) reduces to the classical Fick’s first law. 

Inserting this non-Fickian mass flux expression (2) into the 

mass conservation equation (1), we arrive at: 

∂c∂t = ∂∂x �D
c� �∂c∂x − E
c, σ� ∂σ∂x�� 
 

(3) 

 

To close the set of the governing equations, we 

introduce, following the point of view of past rheological 

studies, a non-linear Maxwell-like time evolution equation 

for the stress that we modify properly to include explicitly 

diffusion. We then write it down in the following form as: 

 

τ� �∂σ∂t − � Jρ
1 − c�� ∂σ∂x + σ ∂∂x � Jρ
1 − c��� + σ
= η%
c� ∂∂x � Jρ
1 − c�� 

 

 

 

(4) 

 

Where τ�	is the relaxation characteristic time scale of the 

polymer and η%	is its longitudinal viscosity. Equation (4) 

characterizes the non-linear viscoelastic behavior of 

diffusion that is produced by the unsteady swelling of the 

polymer. The swelling of the polymer membrane as a result 

of diffusion requires, numerically, an adjustment of the 

boundary conditions during time when one tries and solves 

the discretized partial differential equations. To circumvent 

such a difficulty, we use the Lagrangian (undeformed) 

coordinate system to be denoted in the following by X that 

is related to the Eulerienne (deformed) coordinate x as 

follows: 

&� = '	&( (5) 

 

where F is the xx-component of the second-order 

deformation gradient tensor in the x-direction of diffusion. 

For a unidirectional swelling one easily finds out that: 

 

F = 11 − c 
 

(6) 

3. Scaling analysis 

It is convenient to use the following dimensionless 

quantities: 

X+ = XL- 																							θ = tτ/ 
 

(7) 

For space and time respectively, and the following 

dimensionless quantities for the state variables: 

c0 = cc12 															σ3 = σG- 
(8) 

for the mass fraction and the stress, respectively. The 

quantity c12	is the solvent equilibrium mass fraction and 5-	is the matrix elasticity modulus at the initial state (dry 

polymer). Finally, the dimensionless continuity equation is 

thus: 

∂c0∂θ = 61 − c12c07 ∂
∂X+ ��+61 − c12c07 �∂c0

∂X+ − E-E+ ∂σ3
∂X+�� 

 

(9) 

 

And the normalized stress time evolution equation reads as: 

∂σ3∂θ + σ3D1 = −c1261 − c12c07�+
�� �∂c0
∂X+ − E-E+ ∂σ3

∂X+� ∂σ3
∂X+ 

+c1261 − c12c076σ3 − G+%7 ∂
∂X+ ��+ �∂c0

∂X+ − E-E+ ∂σ3
∂X+�� 

 

 

 

(10) 

 

Equations (9) and (10) involve the following three 

dimensionless functionals: 

D+
c� = D
c� D-⁄  

E+
�� = E
c�
9: ;<⁄ � 

G+%
c� = η%
c� η%-⁄
τ�  

 

 

 

(11) 

where D-	is a constant diffusion coefficient, η%- =
η%
c = 0� is the polymer viscosity at the dry state, V? is the 

solvent molar volume, R is the gas constant and T is the 

temperature. The dimensionless governing equations 

involve a coupling constant: 

E- = V?G-RTC12 
 

(12) 

 And a diffusion Deborah number: 

D1 = τ�τ/, (13) 

defined as the ratio of the relaxation characteristic time 

scale of the polymer to the diffusion characteristic time 

scale	τ/ = L-C DD⁄  , where E-is a characteristic length scale. 

The non-Fickian or viscoelastic behavior is expected to 

occur when the diffusion Deborah number is comparable to 

unit. 

 

4. Results and discussion 

In this section, we present some of the calculated 

profiles obtained by solving numerically the coupled 

governing equations using the finite difference method. The 

profiles correspond to a permeation process of a solvent 

through a thin film of a viscoelastic polymeric membrane 

and are compared with the experimental data of acetone- 

natural rubber system taken from the literature [6].  

The normalized non-Fickian diffusion mass flux is 

shown in Figure 1 for different values of Deborah 

number	D1. We observe that the profiles of the unsteady 



13
ème

 Congrès de Mécanique  11 - 14 Avril 2017   (Meknès, MAROC) 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized time 

N
o

rm
a

li
z

e
d

 F
lu

x
 J

 

 

De=2

De=0.2

De=0.02

De=0.002

Experimental data

permeation mass fluxes are influenced by the viscoelastic 

nature of the membrane. The best fit of the experimental 

data taken from [6] is obtained for	D1 = 2	and	E- = 20. 

Diffusion is clearly viscoelastic. 

 

Figure 1: Normalized flux vs normalized time θ for 

different Deborah numbers for �- = 20 and JKL = 0.09. 

The curve with (
▄
) corresponds to experimental data [6] 

 

Figure 2: Normalized flux vs normalized time θ for 

different values of coupling constant and for �K = 2 and JKL = 0.09. The curve with (
▄
) corresponds to experimental 

data [6] 

In Figure 2, we vary the coupling constant	E- and fix 

the Deborah number to		�O = 2. Again the best fit is 

obtained for De = 2	and	E- = 20. The effect of the 

coupling constant is visible on the permeation flux. The 

Fickian mass flux (E- = 0� cannot correctly describe the 

time evolution of the permeation flux. These results 

corroborate the fact that mass transport into polymeric 

membranes is non-Fickian. 

 

5. Conclusion 

In this contribution, we propose a nonlinear viscoelastic 

model that describes the kinetics of mass transport of a 

solvent into a viscoelastic polymeric membrane. We have 

derived a set of two coupled and non-linear partial 

differential equations governing the time evolution of two 

state variables: the solvent mass fraction and the internal 

stresses created within the polymer. Scaling analysis yields 

to two dimensionless numbers: a diffusion-Deborah number D1	and a coupling constant	E-, whose influence on the 

permeation process are clearly shown.  

We have compared our model predictions with results 

of experimental observations corresponding to the unsteady 

permeation process of acetone through a polymeric rubber 

membrane [6]. A nice agreement is found and diffusion is 

shown, as expected, to exhibit a non-Fickian character. 

 

References 

[1] N. L. Thomas, A.H. Windle A deformation model for 

case II diffusion, Polymer Vol 21, (1980) p.613-619. 

[2] A. El  Afif , M. Grmela , Non-Fickian mass transport 

in polymers, J of Rheology  Vol 46, (2002) p.591–628 

[3] D. A. Edwards, Non-Fickian Diffusion in Thin Polymer 

Films, J. Polymer Science: Part B: Polymer 

Physics,Vol.34, (1996) p 981-997. 

[4] A. El Afif, R. Cortez, D.P. III   Gaver, D. De Kee, 

Modeling of Mass Transport into Immiscible Polymeric 

Blends, J. Macromolecules, Vol 36, 24, (2003) p.9216 -

9229 . 

[5] A. El Afif, M. El Omari, Flow and Mass Transport in 

Blends of Immiscible Viscoelastic Polymers, 

Rheologica Acta, Vol 48, (2009) p. 285-299. 

[6] Q. Liu, D. De Kee, Modeling of diffusion through 

polymeric membranes, Rheologica Acta,Vol 44, (2005) 

p.287-294. 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized time

N
o

rm
a

li
z

e
d

 F
lu

x
 J

 

 

E=0

E=-10

E=-20

E=-30

Exprimental data


