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Abstract   

In this paper, we model, on the mesoscopic level of 

description, the nonstandard behavior of mass transport into 

a binary mixture of two immiscible and rheologically 

different polymers. We formulate a model which explicitly 

incorporates the coupling between diffusion and the 

deformation of the interface and also of the two polymers. 

We use, for this purpose, four microstructural state 

variables, namely a scalar surface area Q and a covariant 

anisotropy second-rank tensor q for the dividing interface, 

and two contravariant symmetric second order 

conformation tensors A and B for the two immiscible 

polymers. A new expression for a 1D diffusion mass flux 

density is derived which involves four coupling 

functionnals. The results presented here show the possible 

occurrence of a non-Fickian behavior, in particular when 

the three involved diffusion Deborah numbers approach the 

unit.  

 

Keywords: Non-Fickian diffusion, Viscoelastic 

swelling, Interface, The polymer conformation.   

 

1. Introduction  

Crudely speaking, polymeric blends might be classified 

into miscible and immiscible ones. However, most of the 

processed polymers are incompatible to each other and 

when mixed, they form a blend embedding an inside 

complex dividing interface whose morphology plays a key 

role in the mechanical as well physical properties of the 

final by-product. Obviously, any dynamical processes, in 

particular those related to mass transport, that affect the 

interface morphology and the polymer microstructure 

require a thorough investigation [1]. A variety of today’s 

applications such as membrane separation, barriers, 

controlled-release of pharmaceuticals, and chemical sensors 

are good candidates for exploiting the use of such complex 

materials. Past and recent studies have clearly shown that 

diffusion of small molecules into such media is expected to 

behave in a way that cannot be reproduced adequately by 

the classical Fickian Theory [1,3, 4]. Several experimental 

observations [2] (and references therein) corroborate such a 

fact and the deviations from the Fickian kinetics are termed 

in the literature non-Fickian or viscoelastic diffusion.  

Here, in this paper, we aim at generalizing the Fickian 

theory by incorporating the effects of the internal 

microstructure on diffusion. First, we extend the Fick first 

law by adding four new structural state variables and write 

down the corresponding free energy density. Then we 

discuss and solve numerically five coupled and non linear 

1D time evolution partial differential equations that 

describe diffusion of a solvent into a blend of two polymers 

separated by an embedded interface. The model also 

provides an expression for the internal stresses created by 

swelling and produced by the internal diffusion mass 

fluxes. Computations were carried out for two blends: Poly 

(isobutylene) PIB/Poly (Dimethylsiloxane) PDMS and of 

Polypropylene PP/ Poly (methyl methacrylate) PMMA. The 

non-Fickian behavior is expected to occur when the 

involved different characteristic time scales are of similar 

magnitudes.  

 

2. Model 

As a starting point, let us specify the appropriate state 

variables necessary to describe our complex mixture 

consisting of a solvent and a blend of two immiscible 

polymers A and B having different rheological properties 

and embedding and internal complex interface. We will 

restrict our study to the situation corresponding to the 

absence of an external flow and assume overall 

incompressibility under mechanical equilibrium. The state 

variables are therefore as follows: 

• The solvent is characterized by its mass fraction: �(�, �). 
• The embedded interface is described by: 

• a scalar surface area density:	�(�, �)  
• a traceless covariant anisotropy tensor:			(�, �). 

• Polymer A is described by a contravariant conformation 

tensor :	
(�, �) 
• Polymer B is described by a contravariant conformation 

tensor :	�(�, �) 
Where r is the position vector and t stands for time. All 

these tensors are second-order and symmetric state 
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variables. The set of the independent state variables for our 

system can thus be written as: 

 � = (�, �, �, �, �)  

(1) 

Now, we specify the internal free energy density for the 

whole mixture {�������	 + �����	(�/�)} under 

consideration as: 

φ = RTΩ !c ln c +%c(1 − c)( + (1 − c)Γ(c)Q 

+(1 − c)(1 − ɸ)	G-(c)2 !��/(�)�0 − ln	(det/(�)�0)( 

+(1 − c)ɸ	G4(c)2 !��/(�)�5 − ln	(de t/(�)�5)( 

 

 

(2) 

 

The first two terms express the mixing part of the 

energy between the solvent molecules and the polymeric 

components, where R is the gas constant; T is the 

experimental temperature; Ω  is the solvent molar volume 

and % is the Flory-Huggins interaction parameter. The third 

term is the excess free energy attributed to the interface and Γ is the interfacial tension. The last two terms represent the 

elasticity of both polymers A and B expressed here by their 

normalized state variables �0 and	�6  to be defined in the next 

section. In expression (2), we have introduced the 

functional /(�) = (1 − �(2 − �78)) to express the smooth 

transition between the two equilibrium states of the whole 

mixture under consideration and corresponding to � = 0 

(initial state) and � = �78  (final state). Expression (2) also 

involves the elasticity moduli G-(c) and G4(c) for both 

polymers and the volume fraction ɸ of polymer B within 

the blend.  

Recall that Fick first law stipulates that the mass flux is 

a vector proportional to the gradient of concentration. 

Following the non-equilibrium considerations, the mass 

flux in complex media is rather related to the gradient of the 

exchange chemical potential. Thereby, the solvent mass 

flux density expression is extended and is written as 

follows: 

 

J = −ρD=∂c∂x + @A ∂Q∂x + @B ∂q∂x + @D ∂A∂x + @F ∂B∂xH 
(3) 

  

where ρ		stands for the constant global mass density and D 

is the diffusivity coefficient. Expression (3) also involves 

four functionals, @I,(i = 1,2,3,4) that couple diffusion to 

the microstructure deformation. The mass conservation 

equation of the solvent in the whole mixture is given by: 

M�M� = ∂∂x ND=∂c∂x + @A ∂Q∂x + @B ∂q∂x + @D ∂A∂x + @F ∂B∂xHO 
 

(4) 

 

This equation is expressed in terms of the already 

defined structural variables and we need to close the set of 

the governing equations that we express in a one 

dimensional setting and use the free energy expression (2) 

to express the physics of our particular system. Therefore: 

 

Interface variable Q: 

 ∂Q	∂t	 = J	
ρ(1 − c)	 ∂Q	∂x	 	+ =q + Q3H ∂	∂x	 = J	

ρ(1 − c)	H 

−(1 − c)τQR NΓ(c)ΓS TQ − Qeq(c)UO	
 

 

 

(5) 

	
Interface variable q: ∂q	∂t	 = J	ρ(1 − c)	 ∂q	∂x	 + Vq − qBQ + 4Q9 X ∂	∂x	 = Jρ(1 − c)	H 

−(1 − c)τQR VΓ(c)ΓS X !q − qYR(c)( 
 

 

(6) 

 

Where,	τQR is the interface relaxation characteristic time 

scale and ΓS = Γ(c = 0)  refers to interfacial tension at the 

initial dry blend. 

Polymer conformation A: 

∂A	∂t	 = J	ρ(1 − c)	 ∂A	∂x	 − A ∂	∂x	 = J	ρ(1 − c)	H 

−(1 − c) N(1 − ɸ)τ- !/(�)A6 − 1( + ɸτ-4 !/(�)B6 	− 1(O 

    

 

 

(7) 

 

Polymer conformation B : 

 ∂B∂t = J	
ρ(1 − c)	 ∂B	∂x	 − B ∂	∂x	 = J	

ρ(1 − c)	H 

−(1 − c) V ɸ
Z[ !/(�)B6 − 1( + (1−ɸ)

\]^ !/(�)A6 − 1(X       

 

 

(8) 

 

Where  τ- is the relaxation characteristic time scale of the 

polymer conformation A (respectively, τ4 for polymer 

conformation B). On the same footing,  _`a designates a 

time constant that couples between the irreversible 

processes in the relaxation of both polymers. Of course, in 

all these equations, (5-8), we need to replace the mass flux b	by its expression (3). The model is also supplemented by an 

expression for the extra stress tensor whose non vanishing 

components are given by:  

σAA = (1 − c)Γ(c) =q + 13QH 

−(1 − c)(1 − ɸ)	GA(c)!/(�)A6 − 1( 

	−(1 − c)ɸ	GB(c)!/(�)B6 − 1( 

 

σBB = σDD = −(1 − c)Γ(c)
2 =q − 23QH		 

 

 

 

 

 

(9) 
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3.  Numerical Results  

Let us switch to dimensional analysis in order to depict 

the different time scales involved in this diffusion process 

and also determine groups of physical parameters that may 

dictate the behavior of mass transport kinetics. To do so, we 

introduce the following dimensionless quantities for space 

and time: ∂∂x = 1LS
∂∂X 											θ = tτg 

(10) 

Where LS	a characteristic length scale and τg is the 

diffusion characteristic time scale. Similarly, we define 

dimensionless quantities for the state variables as follows: 

C5 = ccYR												 
Q6 = QQS 																	qi = qQS 

A6 = AAYR 														B6 = BBYR 

 

 

 

(11) 

 

Here, cYR is the equilibrium mass fraction; QS the total 

interfacial area size density at the initial state and AYR and 

BYR are the equilibrium values for the conformation tensors 

A and B respectively. The dimensionless forms of the 

governing equations involve three diffusion-Deborah 

numbers defined as: 	 
DeQR = τQR	τg , 													De- = τ-	τg 		 										De4 = τ4	τg .	  

(12) 

 

And also four dimensionless groups of physical parameters:  

 

gQ = ΓSQS	Ω RT 				 				gR = αS	QSB 	Ω 			RT 	 
 

g- = Gm-	Ω 	RT 										g4 = Gm4	Ω 			RT  

 

 

(13) 

 

As a result, we here present only the calculated 

normalized mass uptake versus the normalized time for 

fixed values of the coupling constant (gQ = gR = g- =	g4 = 0,1) and for two sets of Deborah 

numbers	(DeQR , De-, De4) = (10no,10nD, 10nD)	 
and	(0.009, 0.9	, 0.4)		 (Figure 1). The curves are calculated 

for two model systems corresponding to the sorption 

process of methanol MeOH into two different immiscible 

blends B/A (30/70): PIB/PDMS and PP/ PMMA. We 

clearly observe an overshoot in the mass uptake when the 

polymers Deborah numbers are approaching the unit. Even 

for very small values of the Deborah numbers, diffusion is 

still non Fickian and does not follow the square root 

kinetics predicted by the Fickian theory. The profiles of all 

the model state variables are calculated both locally and 

globally. 

 

 
Figure 1: Polymer mass uptake vs normalized time. 

Dashed line: (DeQR, De-, De4) = (10no, 10nD, 10nD) and 

Solid line: (DeQR,	De-, De4) = (0.009, 0.9	, 0.4). 
 

4. Conclusion 

In the present study, we have discussed, via modeling 

and numerical resolution, the probable occurrence of the 

non-Fickian behavior in a complex mixture consisting of a 

simple fluid and an immiscible blend of two rheologically 

different polymers. Five new coupled time evolution 

equations are developed and solved numerically. Scaling 

analysis shows the presence of three diffusion Deborah 

numbers and four coupling constants whose influence 

appears to be very significant. When the Deborah numbers 

approach the unit, diffusion is no longer Fickian but 

exhibits, as expected, a non-Fickian character.  
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