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Abstract 

 

A geometrical theory of general nonholonomic 

mechanical systems on fibred manifolds and their jet 

prolongations, based on so-called Chetaev-type 

constraint forces, was developed in 1990s by Krupková. 

The relevance of this theory for general types of 

nonholonomic constraints, not only linear or affine ones, 

was then verified on appropriate models. Frequently 

considered constraints on real physical systems are based 

on rolling without sliding, i.e. they are holonomic, or 

semi-holonomic, i.e. integrable. Moreover, there exist 

some practical examples of systems subjected to true 

(non-integrable) nonholonomic constraint conditions. On 

the other hand, the equations of motion of a bicycle are 

highly nonlinear and rolling of wheels without slipping 

can only be expressed by nonholonomic constraint 

equations. In this paper, the geometrical theory is applied 

to the abovementioned mechanical problem using the 

above mentioned Krupková approach. Both types of 

equations of motion resulting from the theory-deformed 

equations with the so-called Chetaev-type constraint 

forces containing Lagrange multipliers, and reduced 

equations free from multipliers are found and discussed.  

 

Key-words: Nonholonomic mechanics; autonomous 
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1. Introduction  

The motion of mechanical systems is frequently 

subjected to various constraint conditions, holonomic or 

nonholonomic. Nonholonomic constraints lead typically 

to nonlinear equations of motion of the constrained 

system. While theories of holonomic or some special 

types of linear non-holonomic constraints are already 

well elaborated for quite general situations, various 

theoretical approaches to general non-holonomic 

mechanics occur up to now, from the physical point of 

view on the one hand, and from the geometrical point of 

view on the other. The geometrical theory used in the 

presented study was presented for first order mechanical 

problems in [1] and then generalized for higher order 

case in [2] brings an appropriate tool for constructing 

certain type of equations of motion of nonholonomic 

mechanical systems subjected to quite general 

constraints. The main physical idea of the theory is based 

on the concept of Chetaev-type constraint forces 

introduced in analogy to “classical” Chetaev forces. 

Using equations of constraints a special canonical 

distribution on the first jet prolongation of the underlying 

manifold can be constructed. Then first prolongations of 

admissible trajectories of the constrained motion are just 

integral sections of this distribution. By adding Chetaev-

type forces to equations of motion, a dynamical form of 

the constrained problem is obtained and deformed 

equations of motion are constructed. These equations 

together with constraint conditions give the system of 

differential equations for unknown constrained 

trajectories and Lagrange multipliers.  Another possible 

approach to the problem within the same theory starts 

from its description by the so-called Lepage class of 

forms instead the dynamical form itself. The Lepage 

class is, of course, closely related to the dynamical form, 

and it is obtained by the factorization of modules of 

forms by special submodules irrelevant from the point of 

view of the problem. Even though the corresponding 

constraint is semi-holonomic and thus it could be in 

principle treated by classical methods of Lagrange 

multipliers (for details concerning the method in general 

see e.g. the classical textbook of analytical mechanics 

[2]), the direct application of Krupková's geometrical 

theory is very effective in this situation.  On the other 

hand, a great interest has been devoted towards bicycle 

modeling as it is a mechanical system characterized by 

nonholonomic constraints. On the other hand, the bicycle 

is probably the most common mode of transportation in 

the world, next only to walking, and, starting from some 

pioneering papers at the end of the nineteen century, 

many researchers have tried to find proper equations to 

describe the dynamic of this system. Mainly, it is 

possible to distinguish between two different approaches: 

the first obtains the motion equations using the Newton’s 

laws, while the second studies the system from a 

Lagrangian or Hamiltonian point of view. So far, the 

greatest part of the existing literature has been dedicated 

to models with lots of simplifications, even if these have 

been capable to explain the dynamical characteristics of 

the bicycle. For example, linearized equations of motion 

are commonly introduced in order to cope more easily 

with the problem. The aim of this paper is to use the 

geometrical theory for obtaining non-linear equations of 
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motion of the above exposed mechanical problem, using 

the above mentioned Krupková approach for a complex 

mechanical system (high number of degree of freedom) 

and find their solution in some particular cases. This is 

made in the last section, where both respective sets of 

equations of motion (reduced and deformed) are derived. 

 
 

Figure 1. A photo of a real bicycle. 

 

2. Geometrical theory of mechanical 

systems 

For more details and proofs of geometrical concepts of 

the theory see [1]. The detailed theoretical background 

can be found in [2]. 

A non-holonomic constrained mechanical system is 

defined on the (2 1 )m k  -dimensional constrained 

sub-manifold 
1J Y  fibered over Y and given by k  

equations (1 1)k m   : ( , , ) 0if t q q    such 

that rank  /if q k     1 i k  . It is evident that 

only admissible trajectories for a non-holonomic 

mechanical system are such sections : I t Y    for 

which 
1 ( )J t   for all t I , i.e 

1 0if J    for 

1 i k   (the so-called   –admissible sections ).  

1-A section γ of ( , , )Y X  is a path of the deformed 

system [ ] if and only if for every 1 -vertical vector 

field   belonging to   holds  
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Relations (1) represent the system of reduced equations 

for m unknown functions q  ( k  of them are first 

order and ( )m k second order ordinary differential 

equations). 

Physical approach is based on Chetaev-type constraint 

forces. Such a force is given by the constraint itself, in 

analogy with holonomic situations. It is expressed by the 

dynamical form: 

                          

1
i
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f
dt dt i k
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  (4)                                       

where functions ( , , )i t q q    are Lagrange multipliers. 

Note that such dynamical form satisfies the generalized 

principle of virtual work 0Ui    for every 1 -

vectical vector field   belonging to the constraint 

distribution U ,  0 , , 1i i

U span df i k    ,  

,U U Q   being an open set of a chart on 
1J Y . 
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The equivalence class [  ] is called the deformed 

mechanical system. 

A  -admissible section  of ( , , )Y X is called a path 

of [ ] if   2E J    .The following proposition 

holds : 

2-A section   of Y  is a path of the deformed system [

 ] if and only if for every 1 -vectical vector field   

on 
1J Y  it holds  

i
v
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 and 
1 0if J Y           (6)             

 

System (6) is given by k  first order and m second order 

ordinary differential equations for unknown functions i  

and q  and it represents the deformed equation. In the 

following section we apply the obtained equations (1 and 

6) obtained for general non-holonomic mechanical 

system to the example of bicycle system. 
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3. Application: a Bicycle dynamic motion 

There are seven degrees of freedom of the corresponding 

unconstrained mechanical system i.e. 7m . Thus, the 

fibered manifold of the problem is  7
1, ,pr  

where 1pr is the cartesian projection on the first factor. 

We choose the fibered chart on Y  as ( , )V   where V  is 

an open set V Y  and  1 , , , , , , ,f rt X Y     

.The associated chart on the base is 1( , ), ( )pr t     

where t  is the time coordinate, and associated fibered 

chart on the base is (pr1---),where t is the time coordinate, 

and associated fibered chart on 
1 7 7J Y        is (

1V , 1 ), 1
1 ( , )V pr V  ,

1 (t, , )q q    ,1 7 

, i.e

 1 , , , , , , , , , , , , , ,f r f rt X Y X Y                 . 

 

Figure 2. All parameters position for bicycle motion 

 

Constrained mechanical system-reduced equations:  

Computing the coefficients 
'
lA  according to equation (2) 

and coefficients 
'
lsB  according to equation (3). The 

reduced equations are of the form (Eqs: 8 and 9): 
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There is no analytical solution of reduced equations of 

motion, in general situation. 

 

Constrained mechanical system-deformed equations:  

Deformed equations are obtained by the physical 

approach, based on Chetav-type constraint force. 

Deformed equations of motion are: 
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4. Conclusion 

 In this study we studied a real practical system subjected 

to a true nonholonomic constraint condition-a bicycle 

model for first time. Moreover, the presented results 

formulation indicate the effectiveness of the geometrical 

theory of nonholonomic constraints for formulating of 

motion of concrete nonholonmoic constraints systems 

with constraints based on the assumption of rolling 

without slipping.  In perspective of this research, of the 

authors focuses on numerical solution of reduced 

equations of motion and detailed. 
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