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Abstract 
In computational homogenization, the effective 

properties of random heterogeneous materials are 

obtained via the Deterministic Representative Volume 

Element, DRVE. By definition, the DRVE is the smallest 

volume of a heterogeneous media which is typical of the 

whole structure, which means its properties are 

independent of the effects of boundary conditions. Until 

now, it was considered that all heterogeneous materials 

with homogeneous inclusion distribution possessed a 

DRVE.  The microstructure studied in this paper is a 

composite made up of randomly oriented short 

fibers(RSFC) and a computational homogenization is 

performed to investigate its effective properties. The area 

fraction is also varied to study its effect on the size of the 

DRVE. It appeared that at certain area fractions, the 

RSFC does not respect the convergence of the apparent 

properties calculated under different boundary 

conditions. This indicates that it does not adhere to the 

definition of the DRVE in the studied range of scale. The 

concerned area fraction is found to be around the 

percolation threshold. The present work consists 

primarily in investigating the causes of this problem by 

studying an extreme example of a percolating medium 

which is a composite made up of randomly oriented long 

fibers (RLFC). By identifying the contributing factors, 

the calculability of the DRVE of a random composite 

can be predicted by simple verification of the 

microstructure morphology. 

 

Mots clefs: Representative volume element; 

Numerical homogenization; Random media; Composite 
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1. Introduction 
Heterogeneous materials, unlike homogeneous 

ones, need to undergo a process called homogenization 

to find their effective properties. Nowadays, 

computational techniques are more widely used for the 

homogenization of heterogeneous materials. To achieve 

correct and precise calculations, the existence of a 

Representative Volume Element, RVE, is needed. An 

RVE has many definitions, but Hill [1] gave the classical 

definition which states that the RVE is a sample that is 

structurally typical of the whole microstructure, i.e. 

containing a sufficient number of heterogeneities for 

macroscopic properties to be independent of boundary 

conditions. Terada et al. [2] agreed that the RVE has to 

be as large as possible whileDrugan and Willis [3] stated 

that the RVE has to be the smallest volume possible 

where the apparent and effective properties converge and 

meet. 

It is known that most heterogeneous materials 

possess an RVE, although the size may vary depending 

on the properties of each phase, the contrast, the type of 

inclusions and even the type of properties investigated: 

mechanical or thermal. Shahsavari and Picu [4]worked 

on bonded random fiber networks and stated that the 

RVE depends on fiber properties as well as fiber density. 

However, some porous materials like the 3D Poisson 

fibers of Dirrenberger et al.[5] may display an infinite 

integral range which contributes to a very large RVE or 

even the absence of an RVE. Either way, this means it is 

difficult to obtain correct results when carrying out the 

homogenization process. The same could be said for 

fibers with an infinite aspect ratio i.e. infinite fiber 

length.  

In this paper, the computational homogenization 

method is first applied on a randomly oriented short fiber 

composite (RSFC) in 2D. It is widely known that short 

fiber composites possess a DRVE and this paper serves 

to verify its existence by varying the area fraction of the 

fibers. The search for the DRVE is then extended to a 

randomly oriented long fiber composite (RLFC). To 

distinguish it from the RSFC, the fibers in the RLFC are 

considered very long compared to their diameter, thus 

generating an infinite aspect ratio. The RLFC resembles 

the3D Poisson fibers studied by Dirrenberger et al.[5] 

and have shown that the mean apparent properties 

calculated from different boundary conditions do not 

converge even at large volume sizes. This investigation 

will verify if the non-convergent apparent properties are 

present in the RLFC. The goal of this study is to find the 

causes of the non-convergent properties by verifying its 

isotropy. Once they are identified, the homogenizability 

and the calculability of effective properties of any 

heterogeneous materials can be easily predicted. 

 

2. Randomly Oriented Short Fiber 

Composites (RSFC) 

2.1 Generation of the microstructure 
Several samples of the RSFC is generated 

numerically with varying area fractions, Af. Ten different 

RSFC are generated, starting with Af= 0.11, Af= 0.17, Af= 

0.23, Af= 0.27, Af= 0.32, Af= 0.42, Af= 0.51, Af= 0.61, Af= 

0.71 and finally Af= 0.81. It should be noted that Af= 0.23 

is the percolation threshold. These ten RSFC samples are 

illustrated in Fig. 1. 
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Fig. 1 Different microstructures of the RSFC arranged in 

ascending area fraction Af 

 
2.2 Computational homogenization 

technique 
To carry out the homogenization of the RSFC, the finite 

elements (FE) calculations are performed using the 

methodology explained by Kanit et al.[6]. It consists in 

carrying out FE calculations in relation to the sample 

size. The homogenization method is carried out by 

selecting sample sizes S randomly from the macroscopic 

RLFC image, meshing it and performing FE calculations 

on it. This process is repeated until enough realizations n 

is achieved. To better understand this method, a visual 

representation of the different S and their distribution in 

the RSFC is illustrated in Fig. 2. 

a)  b)  
Fig. 2a) Different S used in the finite element 

calculations and (b) the random positions of the smallest 

S 

 

2.2 Material properties and boundary 

conditions 

For each individual S, two types of BCs will be 

applied. Kinematic Uniform Boundary Conditions 

(KUBC) and Periodic Boundary Conditions (PBC) are 

used in the calculation of elastic properties. 

KUBC is described by imposing the 

displacement u  at point x  which belongs to the 

boundary ∂S :  

u E x  x S   

where E  is a symmetrical second-order tensor 

independent of x . 

PBC has the same displacement field as KUBC 

but a periodic fluctuation v  is added into the equation. 

The particularity with the PBC is that the fluctuation 

takes the same values at two homologous points on 

opposite edges of S :  

u E x v   x S   

To determine the apparent mechanical 

properties, strain tensors E  are defined for the 

calculation of each elastic modulus. The calculations in 

this paper are strictly linear elastic with a plane strain 

hypothesis. For both KUBC and PBC, these strain 

tensors are applied in this manner for calculating the 

bulk and shear modulus:  

1 0 0 1/ 2
;

0 1 1/ 2 0k
E E



   
    
   

 

The 2D apparent bulk modulus 
appk  and shear 

modulus 
app  are calculated using these equations:  

12/ 4 ;app appk trace      

The properties such as the Young's modulus Y, 

the thermal conductivity λ and the Poisson's ratio ν 

attributed to each phase are detailed in Table 1. The 

contrast c is set to be cY = Yf/ Ym= 2000. This high 

contrast is to ensure that the effect of the morphology on 

the behavior of the studied microstructures is more 

visible. 

 Young's Modulus Y (GPa) Poisson's ratio ν 

Fiber 2000 0.3 

Matrix 1 0.3 

Table 1 Mechanical properties of the composite’sphases 

 
2.4 Results  

For simplification, only results of 
appk  is 

shown, knowing that other properties behave similarly. 

To verify the convergence of the properties precisely, the 

discrepancy errors of 
appk from the KUBC and PBC are 

compared. Fig. 3 is an example ofhow the 
appk  of the 

RSFC sample with Af= 0.27 do not converge with each 

other. In fact, the discrepancy error evolves with the Af as 

shown in Fig. 4. The maximum discrepancy error seems 

to be around the percolation threshold. Furthermore, they 

tend to stay almost parallel from each other at larger S 

which lead to non-convergent properties. This means that 

the apparent properties are not effective. Without the 

convergence of the properties, the requirements of a 

DRVE which state that the properties should be 

independent of all boundary conditions are not satisfied.  

 
Fig. 3Mean apparent bulk modulus of the RSFC in 

relation to the sample size for Af = 0.27 

 

 
Fig. 4 Evolution of the discrepancy error in relation to 

the area fraction 
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3 Randomly Oriented Long Fiber 

Composites (RLFC) 

3.1 Generation of the microstructure 
The RLFC is made up of fibers with infinite 

aspect ratio and a random fiber orientation. In reality, the 

RLFC can be the equivalent of long fiber non-woven 

materials studied by Demirci et al. [7]. The morphology 

of the RLFC is made of a Boolean model which is 

widely used for generating stochastic models. The idea is 

to embed points randomly in a 2D plane according to a 

Poisson process and generating straight lines from these 

points at random orientations. Fig.5 shows the generated 

microstructure of the RLFC. The same properties and 

homogenization technique are applied in this section. 

 
Fig. 5 Microstructure of the RLFC with Af = 0.51 

 

3.2 Results 
It is seen that the apparent properties resulting 

from both the KUBC and PBC are far apart from each 

other even with larger S, as it is with the case of the 

lowly percolated RSFC. This behavior is also observed 

by Dirrenberger et al.[5] in 3D Poisson fibers. This 

means the apparent properties are not expected to 

converge and thus are not effective.For the RSFC, one 

factor that caused the non-convergent properties is the 

anisotropy created by a chain of fibers. The RLFC, 

however, has percolating fibers directed in every 

direction so, in principle, the bias in the mechanical 

response should have already disappeared. To verify if 

there really is an anisotropic response in the RLFC, a 

study on its elastic moduli tensor is done. 

 
Fig. 6 Mean apparent bulk modulus of the RLFC in 

relation to the sample size 

 

3.3 Elastic moduli tensor 
To verify the isotropy of the microstructure, it is 

imperative to calculate the stiffness matrix C .The full 

apparent stiffness matrix 
appC  for both boundary 

conditions along with the intervals of confidence are 

presented below:  

672 48 188 18 10 15

188 18 424 60 22 14

10 15 22 14 185 15

app

KUBCC

   
 

   
 
    

 (GPa) 

515 34 113 12 8 12

113 12 283 80 21 12

8 12 21 12 132 10

app

PBCC

   
 

   
 
    

 (GPa) 

The anisotropy index a calculated from both 
appC  shows that 0.76KUBCa   and 0.66PBCa  , which 

are quite far from isotropy (a = 1.0). This makes the 

RLFC anisotropic. Demirci et al. [7] studied nonwoven 

fibers which cross from one edge to the other and are 

oriented randomly like the RLFCand have found that the 

fibers are very direction-dependent. 

However, it is uncertain that these observations and 

conclusions remain valid for larger scales. Even without 

convergence of mean properties, Dirrenberger et 

al.[5]estimated that the RVE of 3D Poisson fibers exists 

but is very large. This may also be true for the RLFC, 

where a larger scale would result in a homogeneous 

distribution of fibers and an isotropic behavior. What is 

clear is that in the scale of this study, the DRVE of the 

percolating RSFC and the RLFC cannot be calculated 

without the existence of effective properties. 

 

4. Conclusion 
Indeed, there are heterogeneous materials with 

homogeneous distribution of inclusions which do not 

possess converging effective properties. In this paper, we 

have found the two contributing morphological features; 

random infinite fibers and percolating fibers.Further 

studies on these “problematic” microstructures need to 

be carried out to better understand their behavior, 

especially to verify the convergence of the mean 

apparent properties at higher range of scales. 

Nevertheless, it is certain that no convergence is 

observed in the scale of this study. 
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