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Abstract

The stability of blades and wings is consid-

ered in this work, the natural modes of the thin

blades and wings in incidence under the action of

aerodynamic forces are computed. The wing in

this study has two degrees of freedom correspond-

ing to the bending and torsion. The variation of

the unstably modes versus the far flow field ve-

locity is predicted, in particular, the effects of the

variation of the chord on the stability is examined

. Wing stabilization by piezoelectric material are

considered.
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Introduction

The airfoils and plades are involved in many applications

nowadays, wind turbine, commercial air planes, turbines,

compressor, fans, rotors and propellers are not the unique

examples. The flow around an airfoil and blade depend

on the geometrical configuration of the airfoil and the na-

ture of the flow in far field. For a stable wing of small

angle of attack the flow is attached to the wing and the

oscillation of the lift and consequently the vibration of

the wing are mainly imposed by turbulence density of far

field free stream. When the angle of attack exceeds its

critical values the flow is no longer attached to the wing

and the flow separation occurs a phenomenon associated

with a dramatic fall on the lift. If the angle of attack is in-

creased farther the wing behave like a bluff body generat-

ing a structure similar to the classic kármán vortex street.

The frequency of the shedding vortex increases with the

increase of the free stream velocity and decreases with

the increase of the angle of attack and the amplitude of

the oscillation are lock-in with the frequency of shedding

vortex [1,2].

Controlled strain-induced blade twisting can be attained

using piezoelectric Active Fiber Composite technology,

aimed at provide a mechanism for reduced rotorcraft vi-

brations and increased rotor performance [3]. An opti-

mization technique is proposed in order to select the opti-

mal design variables like the thickness of each composite

layer, center of gravity of the cross section , shear center,

mass per unity length, chord and ballast mass allowing

optimal active twist rotors [4]

An passive control strategy for blades disk interaction in

compressor and turbine using piezoelectric shunt damp-

ing technique is feasible, the strategy is to place the piezo-

electric transducers outside the main stream in turbo ma-

chinery so that the flow is not perturbed [5], An optimiza-

tion technique is employed in order to place the piezo-

electric shunt at optimal locations [5]. In the case of a

high aspect ratio low-pressure turbine blade the unstable

bladed disk reaches a state in which only a single travel-

ling wave exists [6]. In this work we shall show how to

control the stability of the air foil passively. In particular

we shall examine the effects of the chord shrinking and

the effects of added piezoelectric material.

Formulation of the problem

Vibration control based on the passive piezoelectric shunt

damping technique has been documented in the literature

[5]. In this paragraph, we shall present an example to

show how piezoelectric shunt can be used to delay the

threshold instability of blade of airfoil. Let some piezo-

electric material be inserted in a wing or in a blade, so that

the wing motion is coupled to two electrical circuits pow-

ered by the piezoelectric material, the equation of motion

become,
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where the two constant K1 and K2 are reflecting the

electro-mechanical coupling effects, L1 and L2, R1 and

R2, are the inductance of and the resistances of the two

electrical circuits respectively, Uinfty is the far field flow

velocity, w is the displacement of the elastic axis and θ is
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the angle of rotation around the elastic axis. L is the posi-

tion of the elastic axis, E is the Young modulus and G is

the shear modulus. Zα is the position of the mass center

axis, ̺ and ρ are the mass density of the solid and fluid.

f and me are the aerodynamic force and moment at the

elastic axis by unity length. The solution of the system

of partial differential equations is sought in the form of a

normal mode, i.e.

[w, θ, q1, q2] = [wω , θω, q
ω
1
, qω

2
]eiωt (7)

The equation of motion become
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The boundary condition associated to the above system

are
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l is the length of the wing. The above system is trans-

formed to a first order differential system composed of

six first order differential equations. Then, forth order

Range-Kutta method is used to obtain three linearly in-

dependent solutions obeying to the boundary condition at

x = 0. The boundary condition at x = l are used to find

ω, i.e. the eigenvalues of the system.The shouting method

is used to compute the eigenvalues of the above system,

namely ω satisfying the boundary condition at x = l.

Some results are are shown in figure 1 and 2

Results and conclusion

Numerical analysis shows that there are two unstable

modes of equal amplification rate (imaginary part of ω)

and opposite frequency (real part of ω). The system be-

comes unstable when the the imaginary part of ω is neg-

ative. Figure 1 shows these modes for three values of the

parameter of control versus far field flow velocity (the two

modes are plotted three times). In this figure the imagi-

nary part of the two unstable modes are superimposed and

can be seen as one curve. Note that for large flow velocity

the two modes coalesce to form one mode, i.e. a double

root of the dispersion equation. Figure 1 shows the effect

of narrowing the chord of the wing noted C on the un-

stable modes where the two unstable modes are plotted

versus the far field flow velocity for some values of wing

shape. The narrowing the wing is given by the equation

C = C0 + (Cl − C0)
x

l
(16)

Figure 1 shows the two unstable modes for Cl = C0 =

2m,Cl = 0.94C0 andCl = 0.89C0. Note that the critical

velocity increases with the decrease of Cl, we conclude

that shrinking the chord stabilizes the system. Note that

the instability occurs after the stable flatter modes coa-

lesce to form one divergent unstable mode. Figure 2 com-

pare the the two unstable modes obtained without adding

piezoelectric material (the most unstable mode) and after

adding piezoelectric material (the most stable one). It is

concluded that adding piezoelectric material to wing de-

lay the critical velocity as it shown in Figure 2.

https://cmm2017.sciencesconf.org/
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Figure 1: Stabilization due to the shrinking of the chord. Real and imaginary part ofω versus the far field flow velocity. The

three symmetric curves are the real part ofω (the frequency) and the edged curve are the imaginary part ofω (Amplification

rate). The wing becomes unstable when the imaginary part becomes negative.
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Figure 2: Stabilization due to the added piezoelectric material. Real and imaginary part of ω versus the far field flow

velocity. The three symmetric curves are the real part of ω (the frequency) and the edged curve are the imaginary part of

ω Amplification rate). The wing becomes unstable when the imaginary part becomes negative.


