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Abstract 

The paper consists of the study of an elongated cavity 

filled with a viscoelestic fluid in a porous medium that is 

heated from below at a fixed temperature. If we have this 

system without flow it will experience natural 

convection and if the fluid flow exists, mixed convection 

rules over the system. In both cases the temperature 

difference creates different instabilities. At the present 

study we are interested in conducting calculations for 

Boger fluid that is considered a viscoelastic fluid with 

constant viscosity. Generally, the Oldroyd B model is 

used to describe the behavior of viscoelastic fluids. In the 

presence of fluid flow, Peclet number is a non-zero value 

and in this study the Peclet number is varied to check the 

influence of fluid flow on the instabilities. By the use of 

temporal and spatiotemporal methods to solve the 

equations the effect of the fluid flow on the weakly and 

highly viscoelastic zones has been checked. In addition, 

the effect of the relaxation time on the instabilities has 

been studied by comparison of results for different 

relaxation times. Hence, we fix Γ and vary Peclet 

number to plot the critical Rayleigh number curve as a 

function of Peclet number to see the effect of relaxation 

time on the instabilities and to compare the temporal and 

spatiotemporal methods simultaneously. 
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Nomenclature 

Pe: Peclet number 

Ra: Rayleigh number 

K: Critical wave number 

λ1: Relaxation time 

λ2: Retardation time 

Γ: Ratio of retardation time to relaxation time 

ω: Critical frequency 

μs: Newtonian solvent viscosity, kg.m
-1

.s
-1

 

μp: Polymeric solute viscosity, kg.m
-1

.s
-1

 

T1
*
: Upper plate temperature, K 

T0
*
: Lower plate temperature, K 

V: Velocity, m.s
-1 

P: Pressure, kg.m
-1

.s
-1

 

 

1. Introduction  

The mixed convection in a system of a porous medium 

filled with a Newtonian fluid has been largely treated in 

previous research works. In addition, for a non 

Newtonian fluid especially a viscoelastic fluid like Boger 

fluid, the natural convection has already been studied. 

However, in this study the forced convection of a 

viscoelastic fluid in a porous medium between two 

horizontal plates have been examined. The lower plate 

has a fixed higher temperature and the upper plate is 

maintained at a lower temperature. The heat together 

with the flow creates different instabilities in the system. 

The practical application of this kind of research is in the 

extrusion of polymer fluids, solidification of liquid 

crystals, suspension solutions and petroleum activities 

[1]. The Peclet number Pe is defined by the strength of 

fluid flow and the dimensionless Rayleigh number Ra is 

defined by the temperature difference across the layer. In 

rheology models for viscoelastic fluids besides Ra there 

are two other dimensionless numbers as the relaxation 

number, which defines the stress relaxation time, and the 

retardation number, which is the strain retardation time 

[1]. Boger fluids are viscoelastic fluids with a constant 

viscosity. In this case, due to the independence of 

viscosity from shear rate, elastic effects can be separated 

from viscous effects in viscoelastic flows as the latter 

effects can be determined with Newtonian fluids. Boger 

fluids are dilute polymer solutions generally made with a 

solvent sufficiently viscous that stresses due to elasticity 

are measurable [2].  Therefore it is interesting to take 

Boger Fluid (Γ=0.75) as an example of viscoelastic 

fluids to conduct the calculations.      

 

2. Mathematical formulation of the system 

We consider a porous medium between two infinite 

plates saturated by a viscoelastic fluid obeying the 

Oldroyd B law. The height between the plates is H and 

the temperatures at the lower and upper plates are 

maintained respectively at T0
*
 and T1

*
. The temperatures 

are fixed in a way that T1
*

 < T0
*
. Moreover, there is a 

horizontal flow with the velocity V imposed to the 

system. With regards to the Boussinesq approximation 

and Darcy law for viscoelastic fluids with some 

replacements and by putting the equations in the 

dimensionless order like the steps done in the work done 

by S.C Hirata et al. [3], the dimensionless equations are 

written as: 
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                                                                         (1)                                                                                                                                                                                                                                                                                                                                                               

          (2)                                                                                                                                                                                                                                           

.                                               (3)                                                                                                                                                                                                                                                                                

 

The plates are considered impermeable and maintained 

at fix temperatures, therefore the conditions are written 

as:  

                        

.                                           (4)                                                                                                                                                                                                                                     

 

There is also a uniform horizontal fluid flow which is 

represented by: 

.                                                       (5)                                                                                                                                                                                                           
There are four dimensionless numbers that affect the 

system: the Rayleigh number (Ra), Peclet number (Pe), 

relaxation time (λ1) and retardation time (λ2) [3]. In this 

study, the major focus is more put on fixing the ratio of 

the retardation time and the relaxation time (Γ) that is 

defined as: 

 .                                                          (6)                                                                                                                                                                                                                                                                                                                                 

Where μs is the Newtonian solvent viscosity and μp is the 

polymeric solute viscosity because viscoelastic fluids 

and especially Boger fluids are fabricated by adding a 

small amount of polymer to a Newtonian fluid solvent.  

 

Therefore: 

 .                                                                  (7)                                                                                                                                                                                                                                                                                                                            

Thus, the equations are written as a function of Ra, Pe, λ1 

and Γ like in equation (2). 

The use of linear stability analysis of the stationary 

conduction solution results in a system of partial 

differential equations validated by temperature, pressure 

and velocity fluctuations [3].  A normal modes analysis 

for checking the boundary conditions leads us to the 

dispersion equation: 

 

                                                                                       (8)                                             

Where k
2
=kx

2
+ky

2
 and kx is the wave number in the flow 

direction and ky is the wave number in transversal 

direction [3]. For natural convection, Pe=0, the solution 

for stationary instability is obtained by imposing a zero 

frequency and the solution for oscillatory instability is 

provided by assuming a zero imaginary frequency. By 

solving the dispersion equation for a none-zero Peclet 

number ( the case with fluid flow) with a real wave 

number and a complex frequency it is achieved to study 

the behavior of the system in two extreme zones (weakly 

and highly viscoelastic zones).  

In temporal analysis the system is imposed a real wave 

number and a complex frequency. On the contrary, in 

spatiotemporal analysis the frequency is a real and the 

wave number is a complex number. 

 

3. Identifying the weakly and highly 

viscoelastic zones at Pe = 0 

 
The curve of λ1 according to Γ from the equation 

 must be plotted in order to 

distinguish the two zones at Peclet = 0. The equation is 

as shown below and the curve is shown in Figure 1. 

.                   (9)                                                                   

                                                                                                  

 
Figure 1 Zone distinction graph 

 

This graph shows the three important behaviors of the 

fluid in this system including the weakly viscoelastic 

zone, which is the area under the curve, the threshold 

(the curve) and the highly viscoelastic zone, which is the 

area above the threshold curve. In this study we focus 

mostly on the two extreme cases of weakly and highly 

viscoelastic zones. 

 
4. Results and Conclusions   

 

In order to compare the convective and absolute 

instability methods (respectively the temporal and 

spatiotemporal analyses) two same series of calculations 

are conducted with a fixed Γ=0.75 and different 

relaxation times (λ1). Furthermore, both weakly 

viscoelastic and highly viscoelastic zones have been 

covered in the calculations. The results in the weakly 

viscoelastic zone consist a fixed Γ=0.75 and different 

relaxation times as λ1=0.01, λ1=0.03 and λ1=0.05 for both 

temporal and spatiotemporal analyses as illustrated in the 

figure 2. In the same way the results for the highly 

viscoelastic zone include a fixed Γ=0.75 and different 

relaxation times as λ1=0.6, λ1=0.7 and λ1=0.9 for both 

temporal and spatiotemporal analyses as shown in Figure 

3. The Figures 2 and 3 show the results for Peclet 

numbers up to 10. In order to see clearly the difference 

between the curves, figures 4 and 5 illustrate a zoom for 

Peclet numbers up to three. 

 

It should be noted that in the weakly viscoelastic zone 

there is only one mode (one solution), which is evident 

in figure 2, and there are three modes (three solutions) in 

the highly viscoelastic zone. However, in our figures 

there is just one mode represented for highly viscoelastic 
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zone, which shows the most unstable mode among the 

three modes. 

 

The first noticeable point from both Figures 2 and 3 is 

the destabilizing effect of relaxation time on the system. 

In both weakly and highly viscoelastic zones as the 

relaxation time increases, the critical Rayleigh number 

decreases. The decrease in the critical Rayleigh number 

results in a more unstable and chaotic system. 

 

The second important point is the difference between 

temporal and spatiotemporal analyses which is small for 

low Peclet numbers and larger for high Peclet numbers. 

For instance, the Rayleigh number for Pe=0 is the same 

as the stationary solution and for all values of relaxation 

time it does not change as in Figures 2 and 4. 

Considering the highly viscoelastic zone Figures (3 and 

5), the values of Rayleigh number for Pe=0 are not the 

same and even a decrease is observed for the equivalent 

values in temporal analysis. Therefore, the results for 

temporal analysis are more unstable than the results for 

spatiotemporal analysis.  On the one hand, this difference 

between the results from the two methods increases as 

Peclet number increases, as it can clearly be seen in 

Figures 2 to 5. Moreover, in spatiotemporal analysis the 

tendency is upward (less chaotic) with Peclet number 

and conversely in temporal analysis the tendency is 

downward (more chaotic) with Peclet number. 

 
Figure 2 Comparison of results from temporal and 

spatiotemporal analyses as well as the effect of 

relaxation time on the instabilities for a fixed Γ = 0.75 in 

the weakly viscoelastic zone 

 
Figure 3 Comparison of results from temporal and 

spatiotemporal analyses as well as the effect of 

relaxation time on the instabilities for a fixed Γ = 0.75 in 

the highly viscoelastic zone 

 

 
Figure 4 Comparison of results from temporal and 

spatiotemporal analyses as well as the effect of 

relaxation time on the instabilities for a fixed Γ = 0.75 in 

the weakly viscoelastic zone for Peclet numbers up to 3 
 

 
 

Figure 5 Comparison of results from temporal and 

spatiotemporal analyses as well as the effect of 

relaxation time on the instabilities for a fixed Γ = 0.75 in 

the highly viscoelastic zone for Peclet numbers up to 3 
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