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Abstract  

This work presents a numerical investigation of the 

natural thermosolutal convection in a very narrow 

horizontal annular cylinder filled with a porous medium 

saturated by a binary fluid. The governing equations 

describing the two-dimensional steady state flow are 

solved by an Alternating Direction Implicit scheme 

(ADI). In the objective to study the effect of the 

buoyancy ratio, −42 ≤ N ≤ 34, on flow structure and heat 

and solutal transfer rates, in a cavity of radius ratio R = 

1.1, a fixed Rayleigh number, Ra = 50, and Lewis 

number, Le = 2, values are adopted. Critical buoyancy 

ratio values are determined for different flow structures. 

The obtained results show that complex multicellular 

flows appear when increasing the N value respectively in 

the cooperating and opposite cases. 

 
Keywords: Thermosolutal convection, Porous medium, 

Narrow annular geometry, ADI, Critical buoyancy ratio. 

  

1. Introduction 

The study of heat and mass transfer within porous media 

has been the subject of a large number of studies in 

recent decades, due to its numerous applications (thermal 

insulation, heat exchangers...). Cavities of different 

geometries, such as the vertical annular cavities subject 

to horizontal temperature gradients, have been widely 

studied numerically and analytically [1]. Constant 

temperature and concentration imposed across the 

vertical walls [2] or opposing temperature and 

concentration gradients, were also studied numerically in 

this configuration [3]. Most of the existing works on 

natural convection in a horizontal annular porous media 

are concerned with the case of a cavity subject to 

temperature gradients [4], and the double-diffusive 

natural convection has been investigated with and 

without the Soret effect [5], [6].  

In the present paper, the flow structure transitions in the 

case of thermosolutal convection will be studied in a 

very narrow horizontal annular cavity delimited by two 

coaxial, isotherm, impermeable cylinders, filled with a 

porous medium saturated by a binary fluid. The inner 

and outer cylinder of radius ri and ro are maintained at 

constant and uniform temperature and concentration (Ti, 

Si) and (To, So) respectively with Ti > To and Si > So, as 

illustrated in Fig.1. The binary fluid was considered 

incompressible, Newtonian and satisfying the 

Boussinesq approximation. All the results are presented 

for a cavity of radius ratio R = 1.1. 

 

2. Mathematical Formulation  

The dimensionless steady state form of the governing 

equations describing the two-dimensional flow are 

Darcy's equation, conservation of energy and species 

equations, which are given in terms of stream function 

formulation as: 
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FIGURE 1. Schematic diagram of annular domain. 

 
Where T and S are respectively the dimensionless 

temperature and concentration, the stream function   is 

defined by 









r
u

1
and 

r
v







, where u and v are 

respectively the radial and tangential velocity 

components. The thermal and solutal transfer rates can 

be expressed in terms of the average Nusselt number, Nu

, and average Sherwood number, Sh , defined 

respectively by the following expressions: 
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The three dimensionless numbers that appear in the 

governing equations are defined by: 
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The boundary conditions in dimensionless form are 

expressed as:  

r = 1 : T = 1, S = 1 and 







= 0,                                (4) 

r = R : T = 0, S = 0 and 







= 0,                                (5) 

Taking into account the symmetry of the problem, two 

additional boundary conditions are introduced: 

      : 


T
 = 0, 



S
 = 0 and 

r


 = 0,                   (6) 

 

3. Numerical method  
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The governing dimensionless equations (1-3) are 

discretized using the centered Finite Difference method, 

with the Alternating Direction Implicit scheme (ADI). 

The Thomas Tridiagonal Matrix Algorithm is employed 

to resolve the algebraic systems. The iteration process 

was assumed to converge when the following criterion is 

satisfied in each node of the grid: 8
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  refers to T, S, or  , and the superscript n indicates the 

iteration number. The subscripts (i,j) represent the grid 

node. In a previous work [6], grid independence tests 

were carried out in the case of cooperation buoyancy 

forces, showing that a 91 x 111 (r, φ) mesh, is 

sufficiently fine to ensure an accurate steady solution. 

For the opposite buoyancy forces the same process is 

adopted and show that 101 x 141 mesh is optimal. 

 

4. Results and discussion  

4.1 Flow structure  

Fig. 2 shows the flow patterns obtained for the opposite 

buoyancy forces, −42 ≤ N ≤ 0. To better visualize the 

flow structures, a section zoom 
2

0


   is used. 

Increasing the N value for the opposite buoyancy forces 

give rise to much complex flow structures. Firstly, the 

unicellular flow dominates over the interval [−5.2, 0] 

except the value N = −1. The range ]−1, 0] is 

characterized by a counterclockwise cell (due to the 

thermal force domination) occupying the entire annular 

space. While the second range is characterized by the 

solutal force domination allowing the clockwise 

recirculation. Thus, a small increase in buoyancy ratio to 

the critical value Nc = −5.21 implies a first bifurcation 

from the unicellular to the bicellular flow characterized 

by a small counterclockwise cell, which appears in the 

bottom part of the cavity, where a high destabilizing 

solutal gradient occurs, as illustrated in Fig. 2.a. The 

clockwise cell undergoes a pinching with increasing the 

N value and allows to the onset of the bicellular swirling 

flow (see fig. 2.b). Furthermore, the corotative vortices 

separate at Nc = −5.9, becoming independent cells. Then, 

a new counterclockwise cell takes place between the two 

corotative cells and a new pinching of the main 

clockwise cell occurs, as shown in Fig. 2.c, giving rise to 

a tetracellular swirling flow. By the same process, the 

two corotative vortices separate and a new 

counterclockwise cell develops between them, which 

leads to the onset of an hexacellular flow (see Fig. 2.d). 

At the value Nc = −14.2, the last clockwise cell in the 

bottom part of the cavity crashes the counterclockwise 

one, situated below. At the same time as the main 

clockwise cell undergoes a new pinching, an 

heptacellular flow develops, as represented in Fig. 2.e.  

This flow pattern persists over the range −17.9 ≤ N ≤ 

−14.2. Moreover, a reverse transition is observed at Nc = 

−18, from the heptacellular to the pentacellular flow 

occurring over the large range −42 ≤ N ≤ −18, as 

illustrated in Fig. 2.f.   

For the cooperation case, the same flow pattern 

discussed in the opposite buoyancy forces case, up to the 

hexacellular flow, remains. The range of each flow 

structure is plotted in Fig. 3. In this situation, the 

destabilizing thermal gradient effect strongly exceeds the 

stabilizing solutal one in the top part of the annular 

cavity, where the multicellular flow is observed (not 

shown here). 

Beyond the value Nc = 20.3, a reverse transition is 

detected from the hexacellular to the tetracellular flow, 

this flow pattern persists over the entire range 20.3 ≤ N ≤ 

34.   
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                             (d)  N = −11                                                    (e)  N = −15                                                         (f)  N = −30 

FIGURE 2: Flow structure behaviors, (a) bicellular, (b) tetracellular, (c) hexacellular, (d) heptacellular and (e) pentacellular  

for Ra = 50, Le = 2 and R = 1.1.  

4.2 Flow intensity 

Fig. 3 shows the variation of the flow intensity,  , as 

function of the buoyancy ratio for both cases (i.e. 

cooperation and opposite). The     
  (resp.     

 ) 
depicted, corresponds to the maximum clockwise flow 

intensity (resp. counterclockwise) recirculation. For the 

unicellular flow −5.24 ≤ N ≤ 4.61, the     
  (resp.     

 ) 
in opposite (resp. cooperation) case increases 

progressively with increasing N values. The gradual 

increase in the N value leads to a progressive increase in 
    
  and     

  for the bicellular, tetracellular and 

hexacellular flows. At the critical value Nc = −14.2, the 

flow transits from hexacellular to heptacellular flow, 
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involving a significant decrease in     
   (−12.4%), due 

to the reduction in the size of the clockwise cells. 

Beyond this critical value, the development of the 

clockwise cells leads to an enhancement of     
 . 

 
FIGURE 3: Flow intensity behavior as function of N values 

 

Similar behaviors are observed for the cooperation case, 

where the intensity of the flow increases through the 

transition between different flow structures. 
 

4.3 Heat and mass transfer rates 

Fig. 4 shows the variation of the overall Nusselt,   , and 

Sherwood,    , numbers as a function of buoyancy ratio. 

The values of    and    presented for the unicellular 

flow are almost of the order of unity for both N cases. It 

is therefore concluded that for very narrow annular 

cavities and for values |N| ≤ Nc, both transfer rates are 

dominated by conduction / diffusion for both cases. 

The transition to the multicellular flows, as discussed 

above, is characterized by the creation and development 

of convective cells, given the direct transport of particles 

through the contact zone of the counter-rotating cells, 

which improves    and   . The shape of the isotherms 

and isoconcentration lines shown in Fig. 2 illustrates a 

strong distortion in the bottom part of the cavity for N ≤ 

0. Conversely, at the upper part of the cavity for N ≥ 0. 

This allows concluding that the influence of the 

buoyancy ratio on the thermal and solutal distribution in 

the narrow cavity is remarkable when increasing N 

value, and hence, a progressive increase of    and    is 

observed. At the critical value Nc = −14.2, the transition 

from the hexacellular to heptacellular flow allows a 

small increase of    and   , 1.17% and 2.08%, 

respectively. Thus the reverse transition from the 

heptacellular to pentacellular flow causes a reduction of 

the number of convective cells, involving a reduction of 

   and   , −2.95% and −4.93% respectively. After this, 

the development of the convective cells size causes a 

gradual increase of    and   . The same remarks are 

observed for N ≥ 0, where the bifurcation from 

tetracellular to hexacellular flow (Nc = 8.1) is 

characterized by the increasing of    and   , 2.07% and 

5.28% respectively. However, the shift from hexacellular 

to tetracellular (Nc =20.3) reduces    and   , −5.32% 

and −7.72%, respectively. 

 
FIGURE 4:    and    behaviors as function of N values 

 

5. Conclusion 

A numerical investigation of double-diffusive natural 

convection in a horizontal porous annulus saturated with 

a binary fluid using the ADI method is presented. Results 

are given for the radius ratio R = 1.1 and Rayleigh 

number Ra = 50. The effect of the buoyancy ratio has 

been investigated. The variation of this parameter reveals 

its, especially, on the flow structure and on the rates of 

heat and mass transfer.  
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