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Abstract 

Based on the nonlocal elasticity theory and Euler-Bernoulli 

beam model, the nonlinear vibration of Carbon NanoTubes 

with a piezoelectric layer conveying fluid is investigated. 

The nonlocal effects in the piezoelectric material is also 

considered. The nonlinear partial differential equation 

governing the dynamic motion is presented. The applied 

voltage is considered to have both constant and time variable 

terms. The forced vibration under external load and 

parametric excitation is analyzed and different resonance 

conditions are studied based on the multiple scales method. 

The actuated CNTs are studied and the parametric analysis 

was elaborated in linear and nonlinear behaviors. 

1. Introduction 

In these last years, Carbon NanoTubes (CNTs) have been 

considered by many authors due to their excellent 

mechanical, thermal and electrical properties [1]. Length 

scale effect analysis on vibration behavior of single walled 

CarbonNanoTubes with generalized boundary conditions 

and CNT conveying fluid have been elaborated by Azrar et 

al [2-3]. The vibration of carbon nanotubes embedded in 

viscous elastic matrix under parametric excitation by 

nonlocal continuum theory was studied by Wang et al [4]. 

In this paper, the nonlinear partial differential equations 

modeling the dynamic behavior of CNT with piezoelectric 

layer conveying fluid and subjected to excitation force is 

presented. The length scale effects was introduced for the 

CNT materials as well as for the piezo part. Large amplitude 

displacement and time dependent voltage actuation are 

considered. The analytical solutions are obtained based on 

the multiple scales method. Primary and secondary 

resonances can be investigated and the voltage excitation 

effects based the piezoelectric layer can be analyzed for 

actuated CNT. 

2. Mathematical formulation 

Based on the nonlocal Euler-Bernoulli beam model with 

large displacements, the governing equation of viscoelastic 

CNT conveying viscous fluid and subjected to a transverse 

excitation is given by: 

  
 

2

, , , , 1 1 ,
,

2

, , , , 0 (1,1)

t tt xx x t xxtt xx
x

f x xx x xt

m u EA u u m u Ae

m V w w Vw w

    

  

 



   

    

    

, , , , , , ,

2

, , , , , , , , ,

2

, , , , 1 1 , , ,

2

0 , , , , , ,

2

(3/ 2)

2

xxxx s xxxxt f x xt xx t xt

x xx t xx f t tt xx x xx

xx x f xxx xxt x x x

f t tt f x xt xx t xt

EI w c EI w m V w u V w u V w

V w w w V w m m w EA u u w

w w A V w w A e w

e a m m w m V w u V w u V w

 

   

     

   

    


 

 

  

     

2 2

, , , , , , , , ,

2

, , 1 1 , , 0 ,, ,

(3/ 2)

(1,2)

x xx t xx xx x xx xx x

f xxx xxt x x xxx xx

V w w w V w EA u u w w w

A V w w Ae w F e a F 

    

    


, 21
, ,

1

1
0 (1,3)

2

x

x x

e
u w

x k x

    
    

    

where 

1 1 2 2 1 1 2 2 1 1 2 2; ;EI E I E I EA E A E A A A A       
 

in which w and u are the transverse and longitudinal 

displacements, respectively. φ is the electric potential, the 

constants, E1, e1 and k1 indicate the Young modulus, 

piezoelectric and the dielectric constants of piezoelectric 

part. ρ1 and ρ2 are the density of piezoelectric layer and 

Carbon NanoTube respectively. 

, ,i i iE I and A are the modulus of elasticity, cross section 

moment of inertia, cross section area of the ith layer. 
V is the static mean flow velocity and ( , )F x t the transverse 

excitation force. 
0,sc e a and mt are the viscoelastic 

coefficient of the tube, nonlocal parameter and the mass of 

the tube. mf is the mass of the fluid per unit axial length, Af 

and ϑ are the cross sectional area and the viscosity of the 

internal fluid respectively.  

The Galerkin method is employed to solve the nonlinear 

differential equation (1). Based on this method, the following 

solution is considered for the transverse vibration of the 

system: 
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Where Xi is the ith mode shape of vibration for the NanoTube, 

which could be obtained from the linear system and Yi  is the 

associated time responses. For the sake of clarity, the axial 

displacement effect is neglected in this analysis. 

Substituting Eq. (2) into Eq. (1), and then multiplying both 

sides of the resulting equations with Xj (x), and integrating it 

with respect to x over the domain (0, L), the governing 

equation of motion for one mode of nano beam vibration can 

be derived. After same mathematical developments and 

using the mode shape function associated to the considered 

boundary conditions. 

The following dimensionless parameters are used: 
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where V0 and V1 are the amplitudes of constant and harmonic 

voltage and Û  is the dimensionless fluid velocity. 
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The nonlinear differential equation for the time response of 

the fundamental mode is given by: 

 

    2 3

0 1 1 2 0 2cos 2 cos (4)Y c t Y cY c Y F t            

where ε is a small parameter and the constant coefficients 
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In which F  is the amplitude of applied point load. 
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With the multiple scale method [5], the approximate solution 

can be expressed in terms of different times cales as 
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Substituting Eqs. (8-10) into Eq. (4), and separating the same 

order of the small dimensionless parameter , gives 
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The solution of Eq (11) is 
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Where 1(T )A  and 1(T )A  are the unknown complex 

function and its complex conjugate form. 

Substituting Eq. (13) into Eq. (12), one obtains: 
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where CC is the complex conjugate of the previous terms. 

From the above equations, it is obvious that three resonance 

cases are studied 

Case A: 
2 0     

This case shows the primary resonance, the secular terms of 

Eq. (14) is 
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The function A(T1) can be assumed as the polar form: 
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where
1(T ) and 

1(T ) are the real functions 

Substituting Eq. (16) into Eq. (15) and separating real and 

imaginary parts give: 
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Based on the steady motion assumption, one should have 

0   and 0   . Thus 
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As a result, the frequency amplitude relationship can be 

obtained by simplifying Eq. (18) as 
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Case B 
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For this case, named parametric resonance, it is assumed that 

the frequency of parametric excitation caused by the applied 

voltage is near to the system natural frequency. Taking this 

condition, the elimination of secular terms from Eq. (14) 

gives 
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Applying the polar form 
1(T ) / 2iA e   and taking out the 

real and imaginary parts 
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where 
0 2T     and taking 0    and 0   leads to 
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The frequency-amplitude relationship of the steady-state 

motion is obtained as 
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3. Numerical results and discussion 

Numerical results are presented using effective properties of 

simply supported CarbonNanoTubes with a piezoelectric 

layer. The following geometrical and material properties are 

used. 
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The results of primary resonance due to the external 

excitation have been presented in figures 1, 2 and 3. 

 

 

 

 

 

 

 

Figure 1: Fluid velocity U effect on frequency response of 

primary resonance 

 

 

 

 

 

 

Figure 2: The viscoelastic coefficient c effect on frequency 

response of primary resonance 

 

 

 

 

 

 

 

Figure 3: Effect of the voltage V on the frequency response 

of primary resonance 

The effect of the fluid velocity on the frequency responses 

has been shown in Figure 1. The more fluid velocity, the 

higher amplitude of vibration and harder behavior would 

happen in the system vibration. The effects of the 

viscoelastic coefficient and applied harmonic voltage are 

presented in Figures 2 and 3, respectively. The frequency 

response is very sensitive to both parameters in terms of 

nonlinear hardening behavior and amplitude of vibration. 

The vibration of the CNT under parametric excitation which 

is caused by the applied harmonic voltage is represented in 

figure 4. This figure shows the frequency-amplitude 

response of the system in which the red lines show the 

unstable solution. The jump phenomena may occur on the 

system when the voltage frequency approaches to the natural 

frequency. 

 

 

 

 

 

 

Figure 4: Nonlocal parameter μ effect on frequency response 

of the system for parametric resonance 

Various other dynamic behaviors of actuated CNTs are 

investigated and a parametric analysis is elaborated.  

4. Conclusion 

The frequency and time responses are elaborated for 

different resonance cases. The effects of applied harmonic 

voltage, external excitation and the influence of piezoelectric 

effect, fluid motion and the small scale parameter are 

considered in the obtained results. The instability behaviors 

and frequency zone and studied related the fluid velocity and 

voltage frequency. 
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