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Abstract 

 The main aims of this work are on one hand to 

investigate free and forced vibrations of plates 

containing a surface inclined crack, and on the other 

hand to develop crack identification strategies by using 

optimization techniques. 

The 2D differential quadrature method is elaborated for 

free vibration problems, and the genetic algorithm is 

adopted for damage identification. Eigenfrequencies and 

eigenmodes are obtained by few discretization points, 

and used for cracks parameters identification. The impact 

of crack orientation, length and depth is investigated for 

plates with different boundary conditions. Identification 

of damage severity is also discussed; and an efficient 

crack characterization is elaborated. 
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1. Introduction  

Vibration based structural health monitoring is the 

process of identifying the health of structures based on 

changes in dynamic behavior caused by damage [1]. This 

behavior was described by many models, for 1D solids, 

i.e. beams containing one ore multiple open cracks [2, 3], 

or breathing ones. Vibration of damaged 2D solids such 

as plates and shells was investigated in case of horizontal 

crack [4,5,6]. As the main objective of this work is to 

develop strategies for cracks identification in different 

structures, we will first present the previously 

investigated model of cracked plates with inclined crack, 

and elaborate the mathematical and numerical 

developments of the differential quadrature method to 

this problem. An adjusted optimization procedure based 

on genetic algorithms is proposed to predict orientation, 

length and depth of cracks in plates. 

 

2. Vibration of plates with variably 

oriented surface crack  

A rectangular cracked plate of dimensions Lx, Ly and H 

and material properties of E, ρ, υ, is considered. The 

plate is assumed to contain a crack at the centre of its top 

surface, inclined with an angle β with respect to x axis, 

with as depth h, and length of 2C (see Fig.1). 

 

Figure 1: Rectangular plate with inclined surface crack under 

transversal vibration 

The present problem is modeled through the following 

partial differential equation    
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where  )t,y,x(ww   is the transverse displacement 

response, 4  is the bi-harmonic operator and 

)1(12

Eh
D

2
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
  is the plate’s flexural rigidity. bb  is the 

nondimensional  bending compliance, tbbt   is the 

nondimensional bending-stretching compliances, given 

by [5]    
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in which gb and gt are dimensionless functions of the 

crack depth to the thickness ratio given by [5]: 
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The boundary conditions that must be satisfied by an 

edge parallel to x edge for example are as follows: 
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3. Vibration of cracked plates based on the 

DQM 

Thanks to the efficiency of the differential quadrature 

method for solving partial and differential equations, is 

investigated here for plate problem. A short overview is 

first given and the DQM formulation for the inclined 

cracked plate problem is presented. 

 

3.1 An overview of  the used DQM 

The DQM requires to discretize domain of the problem 

into N points. The derivatives at any point are 

approximated by a weighted linear summation of all the 

functional values along the discretized domain, as     

follows [3] 
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where ‘m’ is the order of the highest derivative 

appearing in the problem, )z(f k  are the values of the 

function at the sampling points kz  relating the m
th

 

derivative to the functional values at kz  . These 

coefficients can be determined by making use of 

Lagrange interpolation formula as follows: 
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The weighting coefficients for the first order derivative 

to the functional values at kz  can be obtained as: 
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The second, third and higher derivatives can be 

calculated as: 
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For accurate results, we adopt the Chebychev-Gauss-

Lobatto mesh distribution given for interval [a,b] by: 
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It should be noted that this method has been used and 

deeply tested in case of multi-cracked beams [2,3].              

 

3.2 Free vibration analysis using DQM 

The free vibration problem is solved by using 2D 

differential quadrature method. By assuming a harmonic 

motion, the time-space partial differential equation (1) is 

reduced to the following partial differential equation : 
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In order to use the DQM, the plane of the plate is 

discretized by an (ne x me) Gauss-Lobatto-Chebychev 

grid. At a given point (xi ,yj),  of the plate, each 

derivative in Eq.(10) is written, in the DQM analog,  as 

follows: 
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After some mathematical developments and  using a 

matricial form , the following eigenvalue problem  is 

obtained 

           w w K 2                                  (12) 

After some mathematical developments and boundary 

conditions are incorporated so that: 
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The matrix Ab is the matrix generating the boundary 

conditions. This resulting eigenvalue problem is to be 

solved; and {w} is a (ne x me) row vector given by : 
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The numerical solution of this eigenvalue problem 

allows getting the eigenfrequencies and eigenmodes of 

plates with various crack characteristics. The impact of 

both crack depth and orientation on natural frequencies 

and eigenmodes are investigated. These vibration 

characteristics will be used for cracks identification. 
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4. Cracks identification based on a 

corrected  genetic algorithm 

A genetic algorithm is a probabilistic search algorithm 

based on a model of natural evolution. As the population 

is generated randomly, a correction method is used here 

as well, based on the perturbed projected gradient to 

impose constraints to chromosomes. To estimate 

orientation (β), depth (h) and length (C) of the crack a 

multi-objective optimization based on PARETO method 

is adopted herein, where the following two fitness 

functions are used: 
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The DLAC (Damage Location Assurance Criterion) for a 

given individual j can be designed using a correlation 

approach, lying in the range of 0 to 1, with 0 indicating 

no correlation and 1 indicating an exact match between 

the patterns of frequency changes [1]. The individual j 

giving the highest DLAC value allows the best match to 

the measured frequency change pattern and is therefore 

taken as the predicted damage characteristics.  

Ω and ω are the measured (experimental) and the 

theoretical  eigenfrequencies respectively. Note that as 

previously discussed, the eigenfrequencies depend on 

crack orientation, depth and length, the more the 

eigenfrequency decreases, the more severe the damage 

is. A flowchart of implemented algorithm is given in 

Fig.2 

 

5. Numerical results  

For sake of brevity we present few results in this section. 

A square, simply supported plate having the following 

material properties: E=7.03.10
10

N/m
2
; ρ=2660 kg/m

3
; 

υ=0.33; Lx=Ly=1m; H=0.01mm. Table 1 presents the 

numerically obtained results based on DQM for various 

crack lengths. The crack is centrally located, and has a 

depth of h=0.05 and an orientation angle β=0. It is shown 

that numerical eigenfrequencies based on the DQM 

match well with semi-analytical ones based on multiple 

scales method. The plate is discretized into (13x12 ) grid 

points. 

 
Table 1: Effect of crack length on the first eigenfrequency  

 

β=0 

ω1 (rad/s)  SSSS-plate 

 Present [6] 

C=0 (Intact) 77.58 77.58 

C=0.01 m 75.5438 75.54 

C=0.025m 73.394 73.39 

 

Other cases for β≠0 are investigated, cracks detection 

procedures are elaborated and the obtained results are 

well tested.  

For the inverse problem, the proposed genetic algorithm 

is tested as well. Experimental eigenfrequencies are 

simulated by using ANSYS 14.0 software. Crack 

severity is evaluated through its parameters (h, C, and β). 

Predicted results are then compared to existing ones, to 

test efficiency of the proposed algorithm and its use for 

cracks identification in real situations. 
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Figure 2: Flowchart of the implemented genetic algorithm 

                

6. Conclusion 

The Differential quadrature method is elaborated for free 

vibrations of variably oriented surface cracks in plates 

with different characteristics, and boundary conditions. 

Based on the obtained numerical results, inverse problem 

is solved for cracks identification. Combining corrected 

genetic algorithms with the investigated cracked plate 

model allow predicting crack parameters. Crack 

orientation, which affects significantly eigenparameters 

of the damaged plate, is also well detected according to 

this approach. 

 

References  

[1] C. Boller, Chang F-K,  Fujino Y. Encyclopedia of 

Structural Health Monitoring. John Wiley & Sons, 

2009. 

[2] H. Chouiyakh, L. Azrar, K. Alnefaie and O.Akourri. 

Multicracks identification of beams based on moving 

harmonic excitation. Structural Engineering and 

Mechanics, Vol. 58, No. 6, (2016), 1087-1107. 

[3] H. Chouiyakh, L. Azrar, K. Alnefaie and O. Akourri. 

Vibration and multi-crack identification of 

Timoshenko beams under moving mass using the 

differential quadrature method. International Journal 

of Mechanical sciences, Vol.120, (2017), 1-11. 

[4] J.R. Rice, N. Levy. Journal of Applied Mechanics, 

vol. 39, no 1, 1972, 185-194. 

[5] S.E. Khadem, M.Rezaee. Journal of Sound and 

Vibration, Vol. 236, No 2, (2000), 245-258. 

[6] A. Israr et al. Journal of Applied Mechanics 76.1 

(2009): 011005. 

Create initial 
population 

 

Decode 

chromosomes 

Find theoretical eigen-

frequencies for each 

chromosome: ωi 

Cost evaluation 

for each 
chromosome 

Sort population Conve

rgence 

check 

Mutation 

Select the best 

chromosome 

and discard the 

rest 

Correction loop 

 

Experimental 

frequencies 

 


