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Abstract  

This paper reports an analytical and numerical study of 

natural convection in a shallow lid-driven rectangular 

cavity filled with nanofluids. Neumann boundary 

conditions for temperature are applied to the horizontal 

walls of the enclosure, while the two vertical ones are 

assumed insulated. The governing parameters for the 

problem are the thermal Richardson number, Ri, the Prandtl 

number Pr, the aspect ratio of the cavity, A, the Reynolds 

number, Re, and the solid volume fraction of Cu-

nanoparticles  . Its has been performed numerically by 

solving the full governing equations via the finite volume 

method and the SIMPLER algorithm. In the limit of a 

shallow enclosure for convection in an infinite layer, 

analytical solutions for the stream function and temperature 

are obtained using a parallel flow approximation in the core 

region of the cavity and an integral form of the energy 

equation. 
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1. Introduction 

Heat transfer with conventional fluids, such as water and 

oil, whose thermal conductivity is inherently poor, is 

limited, which is a crucial problem to challenge. In such a 

context, Choi (1995), of Argonne National Laboratory, 

developed the novel concept of nanofluids as a route to 

improve the performances of heat transfer fluids currently 

available. This new class of advanced heat transfer fluids is 

engineered by dispersing solid nanoparticles (metallic, non-

metallic or polymeric), smaller than 100 nm in diameter, in 

base fluids (aqueous or organic host liquids), which confers 

a large thermal conductivity on these ones and makes them 

potentially useful in engineering equipments involving heat 

transfer. Numerous studies, on convection heat transfer, 

have been conducted, and most of them have dealt with 

forced convection, indicating that nanoparticle suspensions 

have unquestionably a great potential for heat transfer 

enhancement, as reported in a recent paper by Corcione 

(2010). At the same time, mixed convection has not 

received either less attention in view of the number of the 

related works recently done. Among them, flow and heat 

transfer problem in lid-driven cavities, which finds 

applications in industrial processes such as food processing, 

float glass production (Pilkington, 1969), thermal-

hydraulics of nuclear reactors (Ideriah, 1980), dynamics of 

lakes (Imberger, Hamblin, 1982), crystal growth, flow and 

heat transfer in solar ponds (Cha and Jaluria, 1984), 

lubrication technologies (Tiwari and Das, 2007) and so on. 

The interaction of the shear driven flow due to the lid 

motion and natural convective flow due to the buoyancy 

effect is quite complex, which necessitates a comprehensive 

analysis to understand the physics of the resulting flow and 

heat transfer process. In this respect, different 

configurations and combinations of thermal and dynamical 

boundary conditions have been considered and analyzed by 

some investigators. The present paper focuses attention on 

such a problem within a two-dimensional shallow 

rectangular enclosure, filled with Cu–water nanofluids, 

whose short vertical sides are submitted to uniform heat 

fluxes while the long horizontal ones are maintained 

adiabatic with the top moving in the opposite direction to 

the heat flux. A numerical solution of the full governing 

equations is obtained via a finite volume method. An 

analytical one, based on the parallel flow approximation, is 

also proposed. The results are presented, in terms of 

streamlines, isotherms, stream function and temperature 

profiles and heat transfer rates, and discussed for various 

values of the dimensionless parameters, controlling the 

problem, which are the Reynolds, Re, and Richardson, Ri, 

numbers, and the solid volume fraction of nanoparticles, Φ. 

 

2. Mathematical formulation 

The studied configuration is sketched in Fig. 1. It is a 

shallow rectangular enclosure of height H and length L , 

filled with Cu–water nanofluids. The long horizontal walls 

are submitted to a uniform density of heat flux, q , while 

the vertical walls are adiabatic.  

 

 

 

 

 

Fig. 1: Geometry and coordinates system 
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The dimensionless governing equations and the 

corresponding boundary conditions are: 
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The local heat transfer, through the nanofluid-filled cavity, 

can be expressed in terms of the local Nusselt number 

defined as           
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3. Numerics 

The dimensionless governing equations have been solved 

by using a finite volume method and SIMPLER algorithm 

in a staggered uniform grid system (Patankar, 1980). The 

convergence has been considered as reached 

when   
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location (i, j) in the plane (x, y). 

 

4. Approximate parallel flow analytical 

solution 

As can be seen from Figs. 4-1, displaying streamlines (left) 

and isotherms (right), the flow and temperature fields 

exhibit a parallel aspect and a linear Stratification, 

respectively, in the most part of the cavity, for 14A  and 

various values of Re, Ri and Φ. 

 

 

 

 

 

 

 

Figs. 2 Streamlines (top) and isotherms (low) for 12A , 

10Re  and 
310Ri various values of  

Accordingly, the following simplifications 
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Where C is unknown constant temperature gradient in the 

x-direction. 

The ordinary non-dimensional governing equations: 
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Using such an approach, the solution of Equations: 

   yyyyyRiCyu 2332Re
12

)( 223 


 

)
2

1
(

1

30

1

34120

1

641012

1
(

34345
2 y

k

yyPeCyyy
RaCy

nf

































 )  

 23
2

3
4

22
Re

12
)( yy

y
y

y
RiCy 

















  

Where 



  

On the other hand, according to Bejan (1983), the energy 

balance in x-direction is: 
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In particular, in the parallel flow region and with the 

application of Eq. (18), Eq. (37) becomes 
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Which, when substituted to Eqs. (34) and (35), gives the 

following transcendental equation: 
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Whose solution, via Newton-Raphson method, for given 

Pe, Ra and Φ, leads to C. 

The Nusselt number is constant and can be expressed as: 
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5. Results and discussion 

With boundary conditions of Neumann kind the flow and 

thermal fields, and thermo-convective characteristics 

Fig. 2: Streamlines and isotherms, for  = 0.2, Re = 10 

and Ri = 5 10
3
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become parallel, stratified and independent on the enclosure 

aspect ratio, A, respectively, when this parameter tends to 

be large enough. In our situation, this occurs with 8A  in 

the limit of the explored values of Re ( 10Re1.0  ), Ri 

(
31010  Ri ) and  ( 2.00  ), and 7Pr (water 

based mixtures). Consequently, the mixed convection flow 

developed within the enclosure is governed only by four 

dimensionless parameters, namely, Re, Ri and. 

 

For analysis the problem, the flow intensity (top), 
c , and 

heat transfer rate (bottom), Nu , are reported, against Ri, in 

Figs. 3 and 4, for each Re and various Φ. It is easy to 

observe that   exhibits in general two tendencies, whose 

expanse depends on Re and Φ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to observe that in fig.3 exhibits in general two 

distinct stable convective regimes, unicellular, and 

bicellular, where the quantity
c  ncreases with Ri, for Φ 

and Re fixed. With regard Nu , (see fig.4) to increase the 

number of Richardson is generally associated with an 

increase in the rate of heat transfer due to the shear flow. 

In Fig. 5, is an illustration of the evolution of the critical 

Richardson number, corresponding to the occurrence of 

Rayleigh-Bénard convection in the presence of the forced 

one as a function of Re, for different values of Φ. It seems 

to dininute with Re to reach an asymptotic value depending 

on Φ. 

 

Conclusion: 

The study of mixed convection Rayleigh-Benard, caused by 

the imposition of a heat flux on the lower wall of a 

horizontal rectangular cavity confining a nanofluid was 

treated numerically and analytically. The full partial 

differential equations, governing the problem, have been 

solved numerically using a finite volume method. The 

computations, which have been limited to Cu-water 

mixtures, with 7Pr , have been carried out with governing 

parameters, Re, Ri and Φ, varying, respectively, in the 

ranges 10≤Re≤1.0 , 
510≤≤1 Ri and 2.0≤≤0  . 

Analytical solution is derived on the basis of a parallel flow 

assumption in the core region of the enclosure. The main 

findings of such an investigation can be summarized as 

follows: 

 In the limit of the selected values of the governing 

parameters, analytical results, agree very well with the 

numerical ones, which validates mutually both the 

corresponding approaches. 

 Flow and temperature fields are strongly depend 

on the Richardson number, measuring the relative 

importance of both lid and buoyancy-driven effects. 

 Increase the number of Richardson is generally 

associated with an increase in the rate of heat transfer due 

to the shear flow and an increase in the intensity of flow. 

 The addition of Cu-nanoparticles in pure water 

leads to an improvement of heat transfer by convection and 

to a deterioration of the intensity of the flow. 
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