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Abstract 
 
In this document, we analytically investigate a fluid flow 
through a deformable tube. The fluid is considered to be 
newtonian, incompressible and it moves along an elastic 
and isotropic cylindrical wall. The study provides a review 
of recent modelling aimed at understanding the effects of 
fluid parameters over the elastic wall tube behaviour. The 
unsteady fluid flow will be analysed following the 
asymptotic approach process using to a large Reynolds 
number and a small aspect radio. Moreover, according the 
small axisymmetric deformation, the wall is mathematically 
developed basing on the thin shell theory whose linear 
approach is applied. Lastly, the dynamic behaviour of the 
tube is represented and discussed.  
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1. Introduction 
Studying a fluid flow through a deformable tube is due to 
its occurrence for its diversity practice in many industrial 
systems and its capability to generate a variety of 
instabilities as using a rigid wall [1]. This standing is 
reflected in biology [2], in micro-fluidic devices [3,4], in 
the renewable energies [5], and Recently in the field of 
transporting gaseous materials under pressure [6] and in 
engineering [7,8]. 
Although much numerical and experimental progress has 
been made during the past decades, studying interaction 
between structure and fluid analytically is not absolutely 
understood yet and remains to be discovered. 
The present work focuses an analytical analysis of the fluid 
flow aspect and its effect on the wall tube behaviour. It is 
based on asymptotic approach followed by a numerical 
simulation. The small parameter ‘ε’ characterizing the 
aspect ratio of the tube governs the fluid asymptotic 
expansion. Moreover, based on linear approach of the thin 
shell theory, the treatment of the wall tube equations 
motion is developed by asymptotic process founded on 
geodesic curvature parameter.  
 
 

2.   Formulation of the problem 
 
2.1 Fluid 
In the presence of gravity force, we analyze an unsteady 
flow of an incompressible, viscous and Newtonian fluid. 
ρ andν  denote respectively the fluid density and the 
kinematic viscosity, L is the tube length, h is the thickness 
and Ro is the radius at rest. ( , )R z t′ ′  is the variable radius 
(radius is a function of the longitudinal variable and time). 
We assume that the tube behaves as a homogenous and 
linear elastic shell with Tρ is the tube density (Figure 1). 

 
 
 

Figure 1. The deformed domain 
 

The physical variables are denoted using primes. At this 
level, we introduce dimensionless variables, namely: 

 

  
r = ′r

Ro

  ,  z = ′z
L

  ,  t = ′t
Tf

,u = ′u
εWo

  ,  w = ′w
Wo

  ,  p = ′p
ρε 2Wo

2

 

 

fT is the reference time, 
   
ε =

R0

L
≪1 is the aspect ratio and 

oW  represents the inlet axial velocity. 
Using system (1), the dimensionless Navier-Stokes and 
continuity equations of the problem, read as: 
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At large Reynolds number [Re=(R0W0)/ υ ] and low 
Strouhal number [St=R0/(W0Tf)], the system (2) is valid 
under the asymptotic restriction: 

  

St

ε
≡ O 1( ) Re

−1

ε
≡ O 1( )                     (3) 

These interactions are the key to respectively analyze the 

(2) 

(1) 
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coupling between the timescales and the nature of fluid 
with space scales 
2.2 Tube 
According to the thin shell theory [9], the flexible tube is 
modelled by using the non-linear Kirchhoff–Love 
geometrical asymptions [10,11,12].  The following system 
formulates the dimensionless variables and parameters:  
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Where TT  is the tube time reference, λ1 and λ2  are the 
Lame constants and 

0.2u is the wall axial displacement 

reference.    
In this section, we adopt the “Least Degeneration Principle 
LDP” approach to better modeling the behavior. The 
following system states our asymptotic constraints. 

2 2
0 2 1 2

1 R
R z

ε ε β ε β⎧ ∂≡ ≡ ≡⎨ ∂⎩
           (5) 

Where 1
R
∂R
∂z

 is the tube geodesic curvature along the  
!ez  . 

According the system (4), the governing equations for the 
tube motion are stated as the under system:  

* 2
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*
2u is the dimensionless wall axial displacement.    

 
3. Linearized problems and resolutions 
 
Fluid:  Let us linearize equations (2) about the particular 
solution at the inlet of tube. Denoting by ε the linearization 
parameter, the LDP provides us the following form: 
u = ε 3u  ; w = 1+ ε 3w  p =

!Pamb + ε
3p                    (7) 

Where u ,w, p are, respectively, the perturbed radial and 
axial velocities, and pressure: 

 
  
u = w = p = 0 for t = r = z = 0        (8) 

Inserting (4) into (2), we obtain at order ε 2 included, the 
non-degenerate equations, namely: 
The 0th order terms 
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At this level, we look for the linearized solutions. So, the 
1st order terms are neglected. Under this assumption, the 
analytical solution of the pressure is obtained.  
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Where the J0 and J1  are the Bessel functions and ω is the 
dimensionless fluid frequency. A1 and A2  are the complex 
numbers with I is the imaginary unit. 
Tube: To resolve the equation (6), we take up the 
linearization process around the initial equilibrium state. 
We introduce the linearized parameters (  β2 ≪1 ): 

P3
* = β2

1/3P3
0 R =1+ β2

1/3R1

 Inserting (13) into (6), the approached solution is 
formulated at the 0th order of β2

1/3  by: 

 γ f
0 P3

0
r!1

+ R1 = 0  

This relation analytically presents the linear correlate to 
fluid flow pressure to the wall deformation. This is in 
totally agreement with many numerical models [12,13].  
 
4. Application and interpretations 
In order to investigate the dynamical behaviours of a three-
dimensional flexible tube due to fluid-structure interaction, 
the geometrical and numerical parameters of the simulation 
are listed in Table1. 
 
Table 1: Geometrical and numerical parameters. 
             Fluid (SAE 50W ):  
  - Density          : 902  kg.m-3

 

 - Dynamic viscosity        : 0.86 Pa.s-1  
 - Strouhal number (Tref=0.05 s)      : 0. 025   
       Tube (Rubber ): 
  - Density          : 990  kg.m-3 
 - Young’s modulus        : 107   Pa.s 
 -  Poisson’s ratio        : 0.4 
 - Length          : 0.8  m 
 - Radius (At rest)         : 1.5    cm 
 - Thickness         : 2 mm 
 
With the above parameters, the asymptotic restriction (3) 
and the asymptotic constraints (5) are perfectly verified 

  
St = 0.025, Re = 188,ε = 0.018( ). Moreover, the resolution 

provides a relationship between the fluid-structure 
characteristics and dimensionless fluid frequency (Figure 2).  
 
  
 

 
 
 

 
Figure 2. System characteristics versus fluid frequency  
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(a) Stress contour plot at t’=0.0125 s (t=0.25)   

 
(b) Displacement of the tube wall at t’=0.0125 s (t=0.25) 

Figure 3. Three-dimensional tube behaviour at FFluid =20 Hz ;  
 

Figure (3) illustrates the elastic deformation which provides 
an assessment the degree of swelling of a rubber tube 
established by the fluid pressure. These results will be 
beneficial for a good control of the prevention widely used 
to preventing or minimizing the transmission of dynamic 
oscillations to a supporting structure [14]. In addition, we 
observe any stress overtaking of elastic limit and slight 
displacement of the wall.  

 
Figure 4. Translational displacement in buckling analysis 
(Buckling factor = -37.361). at t’=0.0125 and FFluid =20 Hz  

 
With this Buckling factor, the Figure.4 indicates the elastic 
pressure wave’s propagation through the wall in the 
vicinity at the exit. The validity of solution is realized [15].   

Conclusion 
In this paper we represented analytically the solution of 
fluid structure interaction for a compressible fluid flowing 
through a deformable tube. Similarity solution is developed 
by Flaherty et al [16,17]. According to these findings, the 
dynamic behavior of a flexible tube used in industrial 
hydraulic systems has been performed.  
As future work, the tube wall behavior will be processed 
considering the axial velocity with a large interval 
frequency. This process will allow us to determine the rate 
limit of wall radial displacement in order to validate the 
asymptotic approach of the model as small deformations. 
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