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Abstract: 
The present combined analytical and numerical work 

explores the mixed convection in a lengthened 

rectangular cavity of aspect ratio, A = 24, confining a 

Newtonian fluid of Prandtl number, Pr = 7, this study is 

made in two cases, in the first we consider the upper and 

the lower wall are mobile, in the second case we accept 

that only the upper wall is moving. Additionally, the 

horizontal walls are supposed adiabatic and the vertical 

ones are subjected to a uniform heat flux density. 
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1. Introduction  

The study of mixed convection heat transfer mechanism 

in lids driven cavity has received enormous attention due 

to its pragmatic as well as theoretical significance, since 

the details of flow and heat transfer insights of cavity as 

well as Nusselt number (or dimensionless heat transfer 

coefficient) are quite useful for possible applications in 

various fields such as, design of cooling systems of 

electronic gadgets,  high performance building 

insulation, multi-shed structures, furnace, food 

processing, lubrication technologies, solar heat 

collectors, drying, etc. [1], [2],  [3] and [4]. 

However, previous work on the study of this 

phenomenon essentially referred the case where the 

cavity is square [4-5]. The case of a horizontal cavity, 

which has not too attracted interest from the scientific 

community, may reveal different results such as shown 

in the study already conducted in this direction if all its 

walls still [6].This study addresses a rectangular cavity in 

both cases, in the first we consider the upper and the 

lower wall are mobile, in the second case we accept that 

only the upper wall is moving. Furthermore, the 

horizontal walls are supposed adiabatic and the vertical 

ones are subjected to a uniform heat flux density. 

This issue is governed by a system of nonlinear partial 

differential equations, expressed in terms of horizontal 

and vertical components of velocity, temperature and 

pressure. With the approximation of a parallel flow, an 

analytical solution is obtained when the aspect ratio is 

wide. The governing equations are also solved 

numerically using an approach based on the finite 

volume method in a regular grid and that in order to 

demonstrate the validity of analytical results 

2. Mathematical formulation: 
The physical system under study is sketched in Fig.1. It 

basically consists of a double-lid-driven rectangular 

cavity with height H’ (y) and length L’ (x), filled with a 

Newtonian fluid. The bottom and top lids impart a steady 

sliding motion in the opposite direction sharing the 

uniform velocity, U0. The long horizontal walls are 

adiabatic, while the vertical short ones are sub- mitted to 

a uniform density of heat flux, q’. 

 

 

 

 

 

 

 

 

 

 

Figure 1 : schematic view of the geometry and 

coordinates system 

We accept the following assumptions: 

 The fluid is Newtonian and incompressible 

obeys the Boussinesq approximation 

 The flow is two-dimensional, laminar and 

steady 

 The radiation heat transfer between the sides of 

the cavity is negligible when compared with the 

other mode of heat transfer 

The governing equations and the corresponding 

boundary conditions are: 
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The local heat transfer, in the horizontal direction of the 

cavity, can be expressed in terms of the local Nusselt 

number defined by the follow equation:  
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 3. Numerical method 
In order to solve the governing partial differential 

equations along with the boundary conditions we have 

used the finite volume method of Patankar [7] and 

SIMPLER algorithm in a staggered uniform grid system. 

The choice of this technique lies in the advantages it 

offers in terms of numerical stability, convergence and 

conservation of flows on each elementary volume. 

The choice of the mesh grid depends on the aspect ratio, 

A, of the cavity and also the nature of the solution. 

Numerical tests were required to optimize the time and 

accuracy of the calculations. Thus the uniform grid of 

381 × 81 is found sufficient to accurately model the flow 

and temperature fields in a cavity having A = 24.  

4. Approximation of parallel Flow 
The case of double-lid-driven cavity 

  
Ra =104, Pe =1 

  
Ra =104, Pe =50 

  
Ra =105, Pe =1 

  

Ra =105, Pe =50 

Figure 2 : streamlines (left) and isothems (ritght) for Ra (104 

and 105 ) and for Pe (1 and 50) in double-lid-driven cavity 

 

 

The case of a lid-driven cavity 

  
Ra =104, Pe =1 

  
Ra =104, Pe =50 

  
Ra =105, Pe =1 

  
Ra =105, Pe =50 

Figure 3: streamlines (left) and isothems (ritght) for Ra (104 

and 105 ) and for Pe (1 and 50) in a lid-driven cavity 

In the both cases (a lid-driven cavity and double-lid-

driven cavity), it is interesting to note that the flow is 

unicellular turning in clockwise, as a result of the 

cooperative aspect of the shear and buoyancy effects that 

work together from left to right 

In above Figures (2-3), the flow and temperature fields 

exhibit a parallel aspect and a linear stratification, 

respectively, in the most part of the cavity, there proves 

the existence of an analytical solution. 
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Where C is the horizontal gradient of Temperature can 

be obtained   by: 
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The equations (9-11) can be rewrite 

3

3
Re

d u
RiC

dy
   (12),        

2

2

1

RePr

d
Cu

dy




      

 (13) 

With: 0 0
T

u v v
y


   


For y=0 and 

1 0
T

u v
y


   


     For y=1                               (14) 

1

0

( ) 0u y dy        (15),              

1

0

( ) 0y dy          (16) 

The solution of the equations (12) and (13), satisfying 

(14)-(16), is: 
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The transcendental equation is: 
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The heat transfer becomes: 
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It is to highlight that if 
0 0v   this is the case of a lid-

driven cavity but for the double-lid-driven cavity 
0v  

receives the value -1. 

5. Results and discussion: 
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Figure 4: Heat transfer rate versus Pe for various values of Ra 
 
Figure 4, where it has postponed the change in the 

average Nusselt number depending on the Peclet 

number, shows that for a fixed Rayleigh number, heat 

transfer is almost constant for low values of Peclet, 

follows it increases relatively slowly and eventually 

grows very quickly. This means that the shearing effect 

improves the heat transfer. 

Rayleigh number effect on the heat transfer is illustrate  

in figure 5, for low Peclet number values the heat 

transfer variation is almost linear, then increasing of the 

Peclet number the variation becomes relatively slow 

until it will be unchangeable. The increase of the 

Rayleigh number gives great values for the heat transfer 

because the buoyancy becomes, gradually, the main 

driving force for the fluid motion. 

In other hand the heat transfer values in double-lid-

driven cavity are relatively higher than those obtained in 

a lid-driven cavity, so we can say that the movement of 

the walls has a positive effect on the heat transfer  
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Figure 5: Heat transfer rate versus Ra for various values of Pe 

 
6. Conclusion 
1. The analytical results agree very well with the 

numerical ones which validate the approximation of the 

parallel flow and the numerical code. 
2. The Peclet, Pe, and the Rayleigh, Ra, numbers have 

positive effect on the mean heat transfer 
3. The movement of the walls promotes the heat transfer 
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