
 1 

Dynamic failure of viscoplastic materials using Taylor-SPH   
 

M. Mabssout
1,

*, H. Idder
1
, M.I. Herreros

2
 
 

1
 Faculté des Sciences et Techniques, Tanger,  Maroc   

2
 Centro de Estudios y Experimentación de Obras Públicas, Madrid,  Espagne  

*
Corresponding author:  m.mabssout@fstt.ac.ma 

 

Abstract 

In viscoplastic materials strain localization always occurs 

before failure.  If the failure is produced by an impact, the 

problem is more complicated since usually shock waves are 

involved in the process. Taylor-SPH (TSPH) is a meshfree 

method suitable to solve the shock waves propagation in 

solids since it minimizes numerical dispersion and 

diffusion. It is able to capture shear bands accurately and it 

avoids the classical tensile instability. In this work, a set of 

numerical simulations has been carried out using TSPH.  

Results show that the TSPH method is an accurate tool to 

capture dynamic shear bands and therefore can be used to 

model failure of materials under dynamic conditions. 
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1. Introduction  

The computation of shear bands in viscoplastic materials 

subjected to an impact is of paramount importance because 

of its importance in predicting failure of materials. The 

numerical predictions of failure could provide useful 

knowledge for engineering practice and design. Mesh based 

numerical methods such as the Finite Element Method has 

been successfully used to solve many problems in Solids 

Mechanics [13]. Nevertheless some difficulties arise when 

dealing with problems where shock wave propagation and 

localization of deformation are involved. To overcome 

these difficulties, meshfree methods have been actively 

developed recently.  Among these methods, the Smoothed 

Particle Hydrodynamics (SPH) developed by Lucy [4] and 

Gingold and Monaghan [5]. Mabssout et al. [69] have 

proposed in previous works a new meshfree method, the 

Taylor-SPH (TSPH), to solve the shock propagation in 

solids. This new numerical method is suitable to solve the 

propagation of shock waves in linear and non linear 

materials and   the localization of dynamic shear bands in 

viscoplastic softening materials. Thus it allows the 

prediction of dynamic failure in viscoplastic materials 

subjected to an impact. The TSPH method consists of 

applying first the time discretization by means of Taylor 

series expansion in two steps and a corrected SPH method 

for the spatial discretization. In order to avoid numerical 

instabilities, two different sets of particles are considered to 

perform the time discretization and a Lagrangian kernel is 

used. Both, Lagrangian kernel and its gradient, are 

corrected to satisfy the consistency conditions. In order to 

show that the TSPH method is an excellent tool to compute 

the dynamic shear bands and failure of materials, a set of 

numerical simulations   has been carried out using TSPH. 

The paper is organized as follows. First, governing 

equations are given in Section 2. In Section 3, equations are 

discretized using the Taylor-SPH method. Numerical 

simulations are given in Section 4.   

2. Governing equations 

The governing equations are written in terms of stress and 

velocity. Neglecting the body forces, the governing 

equations can be written as 

 Balance of momentum equations  
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where σ is the stress , ρ the density and v is the velocity.                                          

 Constitutive equation 

The material behaviour can be described as  
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where D
e
 is the elastic constitutive matrix. The viscoplastic 

component is given by   [11]: 
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In equation (3), the symbol <.>  represents the Macaulay 

brackets.  γ is the fluidity parameter,  m characterizes the 

direction of the plastic flow.  N is a model parameter and F 

is a function describing a convex surface in the stress space. 

The value Fo characterizes the stress level below which no 

viscoplastic flow occurs. 

In this work we will use the Modified Cam-Clay model 

yield surface. The yield surface of the modified Cam-Clay 

model has the form of an ellipsoid in the p-q plane and it is 

defined by [12]: 
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We choose the function F as  
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and  
co pF                            (6)                                                                                                                                              

where p is the hydrostatic pressure, q is the deviatoric 

stress, M is the slope of the failure line in the p-q plane and 

pc is a hardening parameter characterizing the size of the 

ellipsoid. Each stress state has a loading surface defined by 
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In small strain analysis and for 2D plane stress problems, 

the constitutive and balance of momentum equations can be 

written as                      
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where
ij  is the derivative with respect to the time of the 

strain tensor components and Dij is the component of the 

plane stress elastic matrix.     

Therefore, (8) represents a system of first order hyperbolic 

PDEs where the viscoplastic strains affects only the RHS of 

the equations.  Equations (8) can be alternatively written as 
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 being U the vector of unknowns; F and S are the flux and 

source terms respectively.  

3. Numerical discretization 

The Taylor-SPH meshfree method [610] is used to solve 

the partial differential equations (9). It consists of applying 

first the time discretization and thereafter the spatial 

discretization using the corrected SPH method. 

 Time discretization  

Time discretization of equation (9) is carried out by means 

of a Taylor series expansion in time of U up to second order 

accuracy in two steps: 

First step: The values unknowns at an intermediate time 

t
n+1/2

 is obtained first  
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 Second step:  The unknowns at time t
n+1  

is given by 
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 Spatial discretization  

The Taylor-SPH spatial discretization is carried out using 

two steps and two sets of particles [6-10].  

First Step: Applying the corrected SPH spatial 

discretization to the first step of time discretization, (10), 

we obtain the values of the variable U at t
n+1/2
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being J  the “real” particles, such that 
oVPJ h2xx . 

Second Step: Applying the corrected SPH spatial 

discretization to equation (11), we obtain the values of the 

variable U at t
n+1
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where J are the “virtual” particles, such that 
oRPJ h2xx . 

4. Numerical examples 

It will be analysed in this section a two dimensional soil 

sample under plane stress conditions subjected to an impact 

on its upper face. The soil sample is given in Fig. 1 and it 

consists of a square of side 1 m, but for symmetry only one 

half will be considered in the analysis. 

The applied boundary conditions are the following: on Γ1 

velocity has been set equal zero  vx = vy = 0; on Γ2 the 

symmetry results on vx = 0 and σxy = 0;  on Γ3 is a stress free 

boundary, and therefore σxx = 0 and σxy = 0 and finally, 

velocity at Γ4 is  vx=0 and vy = v(t) where to =5 10
-2 

s. The 

soil behaviour is modelled by the Perzyna’s viscoplastic 

law with the modified Cam-Clay yield surface.      

The density of the material is ρ = 2000 kg/m³, the elastic 

modulus is PaE 7108  and Poisson’s ratio is ν = 0.3. The 

parameters of Perzyna’s model are γ = 20 s
-1

 and N = 1. The 

parameters of the modified Cam-Clay model are:  

Papc

5106 ; 1e ; 1 ; 08.0  and 2.1M . The 

domain is discretized using 861 real and 800 virtual 

particles, so that every 4 real particles form a square with a 

virtual particle placed in its centroid. 

 

Fig. 1.  2D soil sample subjected to an impact 

 Fig. 2 shows the viscoplastic strain localization and the 

deformed configuration obtained using the TSPH method.  

This example shows that TSPH method is able to deal with 

shock waves propagating in 2D viscoplastic softening 

materials and it is an accurate tool to define the shear band 

before failure appears.  The same example is solved using 

the following boundary conditions: vx = vy = 0 on Γ1 ; σxx = 

σxy = 0  on Γ2 and Γ3 and finally vx=0  and vy = v(t) on Γ4. 

The soil sample is discretized using 3321 real particles (41 



 3 

x 81 particles). Fig. 3 shows the accumulated viscoplastic 

strain localization for this case. Due to the boundary effect, 

two narrow shear bands starts at the bottom left and right 

corners. The accumulated viscoplastic strain localizes in the 

form of shear bands and propagates to the middle of the 

lateral side of the sample. Four shear bands appear, as 

illustrated in Fig. 3, which typically precedes failure of the 

material. This example demonstrates that the TSPH method 

is an accurate tool to capture shear bands location and 

inclination, and therefore, it can accurately predict where 

the solid will fail.  

5. Conclusions 

Taylor-SPH is a new meshfree method suitable to predict 

dynamic failure in viscoplastic materials.   The problem of 

strain localization in viscoplastic materials have been 

investigated using the TSPH method. The obtained results 

show that the TSPH method avoids numerical instabilities 

of any kind and provides an accurate solution for the 

calculation of dynamic shear bands in softening viscoplastic 

materials. In conclusion, the TSPH method is an excellent 

tool to compute location and orientation of shear bands, 

information of paramount importance to predict the 

material failure.  

 

              

Fig. 2. Strain localization    

 

 

Fig. 3.   Shear bands      

 

References 

[1] M.Mabssout,  M. Pastor.  A Taylor–Galerkin algorithm 

for shock wave propagation and strain localization 

failure of viscoplastic continua. Comput. Methods  

Appl. Mech. and Engrg, (2003); 192: 955–971. 

[2] M. Mabssout,   M. Pastor. A two step Taylor–Galerkin 

algorithm for shock wave propagation in soils. Int. J. 

Numer.  Anal. Meth.  Geomech, (2003); 27: 685–704. 

[3] M. Mabssout,  M. Pastor, M.I. Herreros, M. Quecedo. A 

Runge-Kutta, Taylor-Galerkin scheme for hyperbolic 

systems with source terms. Application to shock wave 

propagation in viscoplastic geomaterials.Int. J. Numer.  

Anal. Meth.  Geomech. (2006); 30(13): 1337-1355. 

[4] L.B. Lucy. A numerical approach to the testing of 

fusion process.  Astronomical Journal, (1977); 82:1013-

1024. 

[5] R.A. Gingold, J.J. Monaghan. Smoothed particles 

hydrodynamics: Theory and application to non-

spherical stars. Monthly Notices of the Royal 

Astronomical Society, (1977); 181: 375-389. 

[6] M. Mabssout, M.I.Herreros.  Taylor-SPH vs Taylor–

Galerkin for shock waves in viscoplastic continua.  

Eur. J. Comput. Mech. (2011) , 20 (5–6): 281–308. 

[7] M. Mabssout, M.I. Herreros.  Runge-Kutta vs Taylor-

SPH. Two time integration schemes for SPH with 

application to Soil Dynamics. App. Math. Modelling, 

(2013), 37(5): 3541-3563. 

[8] M.I.Herreros, M.Mabssout.  A two-steps time 

discretization scheme using the SPH method for shock 

wave propagation.  Comput. Methods Appl. Mech. Eng. 

(2011) , 200: 1833–1845. 

[9] M. Mabssout, M.I. Herreros, H. Idder. Predicting 

dynamic fracture in viscoplastic materials using Taylor-

SPH. International Journal of Impact Engineering; 

(2016) ; 87; p. 95-107. 

[10] H. Idder. Une nouvelle approche pour la modélisation 

des problèmes dynamiques : Taylor-SPH.            

Faculté des Sciences et Techniques de Tanger ; Thèse 

soutenue le 21 novembre 2015. 

[11] P. Perzyna. Fundamental problems in viscoplasticity, 

Recent Advances in Applied Mechanics. Academic 

press, New York, (1966); 9: 243-377. 

[12] J.B.Burland.  Correspondence on the yielding and 

dilatation of clay. Geotechnique, (1965), 15: 211-214. 

 


