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Abstract 

We report theoretical and numerical results on 

bifurcations in thermal instability for a 

viscoelastic fluid saturating a porous square 

cavity heated from below. Temporal stability 

analysis showed that the first bifurcation from 

the conductive state may be either oscillatory 

for sufficiently elastic fluids or stationary for 

weakly elastic fluids. The dynamics associated 

with the nonlinear interaction between the two 

kinds of instabilities is first analyzed in the 

framework of a weakly nonlinear theory. On 

the other hand, computations performed with 

high Rayleigh number for weakly and strongly 

elastic fluids indicated that the system exhibits 

successive bifurcations from stationary or 

oscillatory single-cell convection to a more 

complex spatio-temporal  multi-cellular flows. 

The major new findings were presented in the 

form of bifurcations diagrams as functions of 

viscoelastic parameters for Rayleigh number 

up to 420. 
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1. Introduction  

Viscoelastic fluids can be found in a great number of 

applications such as those in bio-engineering and in 

pharmaceutical and petroleum industries, among others. 

Recently, some activities have been devoted to investigate 

the primary convection patterns of a viscoelastic fluid 

confined in a porous medium heated from below by using 

the modified Darcy’s law based on the Oldroyd-B model. 

Kim et al. [1] and Yoon et al. [2] performed a linear 

stability analysis and showed that in viscoelastic fluids such 

as polymeric liquids, a Hopf bifurcation as well as a 

stationary bifurcation may occur depending on the 

magnitude of the viscoelastic parameters. With infinite 

horizontal porous cavity, the question of whether standing 

or traveling waves are preferred at onset has been fully 

addressed by Hirata et al [3]. In addition to its theoretical 

interest, Delenda et al [4] have showed that viscoelastic 

convection in porous media may be useful for industrial 

applications interested by the separation of species of 

viscoelastic solutions. The objective of this study is to use 

both theoretical and numerical approaches in order  

determine a global picture in the Rayleigh-viscoelastic 

parameters  space on possible successive bifurcations of 

convection patterns in a square porous cavity saturated by a 

viscoelastic fluid. 

 

2. Problem formulation and review of linear 

stability  

We consider a square box filled with a Boussinesq 

viscoelastic liquid saturating a porous square cavity heated 

from below with a constant temperature. Horizontal 

boundaries are assumed perfectly heat conducting while the 

vertical walls are considered impermeable and adiabatic. 

The dimensionless form of the governing equations are [5] 

 

 
 

where  and  are the relaxation time and the retardation 

time respectively,  is the Darcy-

Rayleigh number  and   is the stream function .  

 
We shall briefly sketch the linear analysis, by emphasizing 

the most important points. When the conductive basic state 

loses its stability, There is a line of steady bifurcations 

given by  for a single-cell convection and a line 

of Hopf bifurcations along: 
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with the critical frequency: 

 
provided   , 

where m is the number of rolls. The Hopf curve branches 

off the steady bifurcation curve when  

 
At this point the linear theory fails to predict the dominant 

mode of convection. Therefore, a weakly nonlinear stability 

analysis is needed to elucidate the bifurcation processes 

near the codimension-two bifurcation point  

 

3. Weaky nonlinear stability results 

In a recent paper Hirata et al. [3] proposed a nonlinear 

reduced model by using perturbation techniques in the 

neighborhood of the codimension-two bifurcation point 

 They derived the following system of nonlinear 

ordinary differential equations governing the dynamics of 

the normalized vertical velocity field :  

 

with ,  

and 
 

The stability types of fixed points and limit cycles, the 

bifurcation lines and the phase portrait associated with the 

above system were analyzed by Hirata et al. [3] by using 

dynamic systems theory.  In particular, we succeeded in 

obtaining an explicit form of some nonlinear thresholds as a 

function of viscoelastic parameters : 

 
with : 

,  and   

           

. The oscillatory convection induced by the  Hopf 

bifurcation is the only stable pattern for .  The 

two types of convective patterns, namely oscillatory and 

stationary convection coexist between the nonlinear 

thresholds  and  . The observability of either 

oscillatory convection or stationary one depends on the 

initial conditions. The line  corresponds to a 

double homoclinic bifurcation points. The line  

 represents the nonlinear threshold for the 

transition from oscillatory convection to stable stationary 

one independently of initial conditions. This means 

physically that the viscoelasticity of the fluid has no 

influence on the convection properties and the system 

behaves like a Newtonian fluid when the Rayleigh number 

slightly exceeds the nonlinear threshold . 

 

4. Numerical results 

One of our main points of interest centers on the question as 

to whether the primary and the secondary steady bifurcation 

observed respectively in the weakly and moderately 

viscoelastic regimes is stable against time- dependent 

disturbances. With regard to this question, it has been 

established that for a Newtonian fluid saturating a porous 

square box, a single-cell solution undergoes a series of 

bifurcations as the Rayleigh number is increased. At the 

second critical value of the Rayleigh number , a 

Hopf bifurcation has been observed for two-dimensional 

single-cell convection [6] . 

The general bifurcation diagram is shown in  

plane for  (Fig. 1(a)), and in  plane for 

 (Fig. 1(b)) where the upper curves correspond to 

the computed Hopf bifurcation lines up to .  In 

order to have an overview summarizing in a single scheme 

all the main bifurcations, we also display in both figures the  

transition line to a first Hopf bifurcation determined by 

linear stability analysis (lower curves) and the  transition 

line to a steady convection state (middle curves) determined 

previously. The two figures present a few interesting 

phenomena worth discussing in more detail. First among 

them concerns the successive bifurcations observed in the 

weakly elastic fluids (i.e. for   in Fig. 

1(a) or  in Fig. 1(b). For these fluids, a 

first stationary bifurcation occurs at the well known critical 

Rayleigh number . This means that the fluid 

elasticity has no effect on the first instability properties and 

the non-Newtonian fluid behaves as a Newtonian fluid. By 

increasing  to a second critical value , a Hopf 

bifurcation occurs and the steady convective pattern is 

replaced by oscillatory convection. A close inspection of 

Fig. 1(a) and Fig. 1(b) shows that the second critical 

Rayleigh number  reaches its maximum for 

 and  respectively. 

When  is decreased from  to (see 

Fig. 1(a)) or  is increased from  to 

(see Fig. 1(b),  deceases from its 

maximum and eventually joins the limit  , 

corresponding to Newtonian fluids [6]. We conclude that 

the effect of the relaxation (retardation) time on the second 

transition to oscillatory convection is stabilizing 

(destabilizing) for weakly viscoelastic fluids. 

Second, in moderately viscoelastic regime where the 

viscoelastic parameters are such that   or 

, three sources of instability act in a 

concert to select the dominant mode of instability, namely 

the heating from below, the relaxation time and the 

retardation time. The resulting dynamics in this regime may 

be understood for example by increasing Darcy-Rayleigh 

number for fixed values of viscoelastic parameters. The 

first convective instability is oscillatory rather than steady 

when Darcy-Rayleigh number exceeds the onset of the first 
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Hopf bifurcation  (region between the lower line and 

the middle line in Fig. 1(a) and in Fig. 1(b)). It should be 

noted that this oscillatory convection is completely due to 

the viscoelastic character of the fluid. By increasing  to a 

defined critical value, a secondary bifurcation occurs where 

a stationary pattern becomes the dominant mode of 

instability (region between the middle line and the upper 

line in Fig. 1(a) and in Fig. 1(b)). Physically, this transition 

may be understood by the dominant viscous effect 

compared to the elastic contribution. Finally, at a third 

critical Rayleigh number , a transition is observed as 

a secondary Hopf bifurcation giving rise to a new mode of 

oscillatory convection (region beyond the upper lines in 

Fig. 1(a) and in Fig. 1(b)). It is interesting to note that the 

critical Rayleigh number  observes a sharp decrease 

(i.e. a strongly destabilizing effect) when   exceeds the 

value  by small amount or is just below the value . 
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 Figure 1: General stability diagram for  in the 

 plane (a) and for  in the  plane 

(b).  (the lower bold line) and  (the upper bold 

line) correspond to the nonlinear thresholds derived from 

weakly nonlinear stability analysis. 
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