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Abstract 

 

This study deals with a numerical simulation of couple 

stress and poro-elasticity effects on hydrodynamic 

performances of squeeze film between infinitely long 

parallel plates. The lower plate is an elastic porous 

matrix saturated by a fluid film and its poro-elasticity is 

taken into account by the means of homogenization 

method. The modified Reynolds equation in the fluid 

film and the homogenized equations in the poro-elastic 

plate, discretized by finite differences method, are 

coupled using sequential algorithm and solved iteratively 

using Gauss-Seidel over-relaxation method. 

 

Keywords: couple stress; poro-elasticity; squeeze 

film; numerical simulation.  

 

1. Introduction 

 

The technology of porous squeeze films is widely used 

in industry and biomechanics. The studies of porous 

squeeze films focus traditionally on rigid porous 

materials [1 - 3]. The study of Gbehe et al. [4] take into 

account the poro-elasticity effects of a porous squeeze 

film by the means of homogenization method [5]. In this 

latter study the fluid film is considered Newtonian. In 

realities, the Newtonian fluid is doped by suspended 

particles and thus its rheological behavior is non-

Newtonian. The present paper deals with a numerical 

simulation of poro-elastic squeeze film considering non-

Newtonian effects based on The Stokes couple stress 

theory [6]. The poro-elasticity of the porous plate is 

taken into account by the homogenization method. 

 

2. Problem definition and governing 

equations 

 

Consider two parallel infinitely long flat plates of length 

L immersed in a non-Newtonian lubricant (Figure 1). 

The lower plate of thickness H is fixed and poro-elastic. 

The upper plate, located by g(t) and supporting a 

constant load W0, is rigid and has a squeezing movement 

of instantaneous velocity – dg/dt. 

The lubricant between the two flat plates is modelled as 

an incompressible Stokes couple stress fluid [6]. The 

flow is laminar and axisymmetric. Using the thin film 

assumption in absence of body forces and neglecting 

inertia effects into the fluid film, the continuity and 

motion equations in Cartesian coordinates read:  
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where μ, p, v1 and v2 are respectively the dynamic 

viscosity, the pressure, the components of fluid velocity 

vector in x1 and x2 directions respectively. 



l   is the 

couple stress parameter, where η represents a material 

constant responsible for the couple stress fluid property. 

Integrating the momentum equations (3) using the no-

slip condition and no couple stress on the upper plate and 

the slip velocity and no couple stress on the film – poro-

elastic plate interface, the velocity component u1 is 

obtained. Integrating the continuity equation (1) across 

the fluid film with respect to x2, the modified Reynolds 

equation is then derived: 
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where    




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
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l

h
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tanh 2412, 323 , v2

*
 is the fluid 

velocity in x2 direction at the film – poro-elastic plate 

interface and Ub is the Beavers-Joseph slip velocity [7] 

given for couple stress fluid by: 
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where 
k

h
 , k is the constant permeability of the 

poro-elastic plate.  

 

 

h is the total fluid film thickness is given by:  
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     tgh                             (6) 

 

δ is the film – poro-elastic plate interface deflection. 

 

The poro-elastic plate is considered homogenous, 

isotropic and composed of periodically reproduced 

elementary cell. The elementary cell, of length l and 

width e, is composed of solid matrix domain and pore 

domain saturated by the fluid film. The solid matrix is 

supposed to be elastic and its deformation is considered 

small. The suspended particles into the fluid film are 

assumed large and do not penetrate into the poro-elastic 

plate. Thus, the fluid film saturating the pore domain is 

Newtonian such as the study of Gbehe et al. [4]. Due to 

the assumption of scale separation, the unknown fields 

are functions of two independent space variables: 

macroscopic space variables (x1, x2) describing the poro-

elastic plate and microscopic space variables (y1, y2) 

describing the elementary cell. The macroscopic 

equations within the poro-elastic plate, obtained by the 

use of homogenization technique [4], are: 
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where k, eff
ijmnC  , ij   and  







 0

smn uE   is a constant 

permeability of the poro-elastic plate, the effective 

elastic stiffness tensor, the Biot effective stress 

coefficient tensor and the macroscopic strain tensor. The 

equations (11) and (12) are respectively the Darcy’s law 

and the Laplace equation and are defined into the fluid 

part. The equation (13) represents the equilibrium 

equation and is defined into the solid part. This 

macroscopic equilibrium equation depends of two 

microscopic displacement vectors solutions of 

microscopic equilibrium equations on the elementary cell 

[4]. 

The definitive partial differential equations in the fluid 

film (4) and the poro-elastic plate (11 – 13) are 

discretized by the finite difference method and the 

obtained algebraic equations are solved using the 

iterative Gauss-Seidel method. The coupled problem, 

film – poro-elastic plate, is solved using a sequential 

coupling algorithm based on fixed point technique. 

 

3. Results and discussions 

 

To examine the coupled effects of couple stress on the 

poro-elastic squeeze performances, the numerical results 

are presented and analyzed in the following for different 

couple stress parameter 
0h

l
l  and fixed permeability 

parameter 
3
0h

kH
k  and flexibility parameter 
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  values. h0, ν and E are 

respectively the initial fluid film thickness, the Poisson 

ratio and the Young modulus. 

 

Figure 2 shows the effects of couple stress on 

dimensionless load capacity for a poro-elastic plate. Due 

to the upper plate acceleration, the dimensionless load 

capacity increases with dimensionless time during initial 

stage of squeeze for all considered dimensionless couple 

stress parameter values. Then it decreases sharply and 

becomes almost constant at the end of the squeeze. 

Moreover, it’s shown that the load capacity increases 

with the couple stress parameter during the initial stage 

of squeeze and then has no more effect. This rise of the 

load capacity is due to the influence of suspended 

particles into the lubricant which resist and oppose to the 

lubricant fluid motion and has as consequence the 

increase of pressure. This effect decelerates the upper 

plate motion and thus reduces its inertial force, which 

decreases the load capacity to balance the upper plate 

inertia. 

 

Figure 3 presents the variation of friction coefficient as 

function of dimensionless time for different values of 

dimensionless couple stress parameter. The decrease of 

friction coefficient with time for all dimensionless 

couple stress parameter values is observed. During the 

initial stage of squeeze, the friction coefficient coincides 

for all dimensionless couple stress parameter value. 

However, it’s then observed that the presence of 

suspended particles into the film fluid generates a greater 

friction coefficient compared to Newtonian fluid because 

of a higher value of the ‘apparent’ viscosity. This result 

is consistent with the variation of the load capacity 

presented in figure 1. 

 

4. Conclusion 

 

This paper deals with the couple stress and poro-

elasticity effects on hydrodynamic performances of 

squeeze films. The lubricant in the fluid film region is 

modelled by the Stokes theory. The poro-elasticity effect 

into the poro-elastic plate saturated is taken into account 

by the homogenization method. According to the 

numerical results, due to the presence of suspended 

particles into the fluid film which decelerate the fluid 

film flow, the load capacity and the friction coefficient 

increases during the squeeze process. 
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Figure 1: Squeeze film geometrical configuration 

 

 

 

 

 

 

 

 

 

 
Figure 2: Variation of dimensionless load capacity as 

function of dimensionless time for different 

dimensionless couple stress parameter l  

 

 

 

 
Figure 3: Variation of friction coefficient as function of 

dimensionless time for different dimensionless couple 

stress parameter l  

 


